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Abstract 
Modern Network Operations Centers (NOCs) face significant challenges in 
managing the large volume of alerts generated by diverse monitoring systems. 
Manual triage processes, delayed escalation, and the absence of contextual 
intelligence often lead to prolonged incident resolution times and service 
degradation. This research proposes an AI-powered NOC Alert Triage and 
Escalation System that integrates microservice architecture, automated escalation 
mechanisms, and Large Language Model (LLM)-based analysis to improve alert 
handling efficiency. The proposed system leverages a FastAPI-based webhook 
service for real-time alert ingestion, PostgreSQL for persistent storage, RabbitMQ 
for asynchronous communication, and an Ollama-based LLM service for incident 
summarization and contextual knowledge enrichment. 
Automated escalation is managed through a persistent scheduling mechanism to 
ensure reliability, even during system restarts. The Experimental evaluation 
demonstrates a reduction in the Mean Time to Acknowledge (MTTA), improved 
alert reduplication accuracy, and enhanced incident understanding through AI-
generated summaries. The system is scalable, fault-tolerant, and customizable, 
making it suitable for enterprise-level NOC environments. 
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INTRODUCTION 
2.1  Background
Network Operations Centers (NOCs) form the 
backbone of modern digital infrastructure, 
particularly within enterprise IT environments, cloud 
service providers, and large-scale telecommunications 
organizations. With the exponential growth of 
networked devices, applications, and distributed 
services, both the volume and complexity of 
operational alerts have increased significantly. 
Monitoring systems continuously generate alerts 
related to configuration issues, hardware failures, 
security incidents, and performance degradation. 
Although these alerts are essential for maintaining 
service reliability, their sheer volume often 
overwhelms human operators Traditional NOC 

environments primarily rely on manual classification 
processes static threshold-based alerting, and human 
driven escalation protocols. However, these 
approaches are increasingly inadequate to manage the 
complexity of contemporary network ecosystems. 
Alert fatigue has become a widespread issue, where 
excessive non-critical notifications reduce operators’ 
ability to focus on high-priority incidents. Research 
indicates that alert fatigue contributes to increased 
Mean Time to Acknowledge (MTTA) and Mean Time 
to Resolve (MTTR), directly affecting service-level 
agreements (SLAs) and customer satisfaction. The 
motivation for this research stems from the need to 
modernize NOC alert management through 
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intelligent automation, scalable system architecture, 
and contextual decision support. Recent advances in 
artificial intelligence, particularly Large Language 
Models (LLMs), offer new opportunities to enhance 
incident understanding through automated 
reasoning, summarization, and knowledge retrieval. 
Despite these advances, the practical integration of 
such technologies into real-world NOC workflows 
remains limited. 
2.2 Problem Statement 
Despite the availability of advanced monitoring 
platforms, most NOCs continue to face three primary 
challenges: (1) inefficient alert triage, (2) delayed or 
inconsistent escalation, and (3) lack of actionable 

context during incident response. Alerts frequently 
arrive as isolated events without sufficient diagnostic 
details, requiring operators to manually execute 
troubleshooting command, consult documentation, 
and correlate historical incidents. This manual 
process is time consuming, error prone, and highly 
dependent on individual expertise. 
Additionally, many existing alert management systems 
are monolithic and tightly coupled, limiting scalability 
and hindering integration with AI-driven 
components. Escalation mechanisms are often 
implemented using in-memory schedulers or manual 
workflows, which are 
 

 
Figure 1: Core monitoring domains handled by a Network Operations Center (NOC), including network, 

server, cloud, and website monitoring 
 
unreliable during system restarts or unexpected 
failures. These constraints emphasize the need for a 
resilient, intelligent, and extensible alert management 
framework. 
 
2.3 Research Objectives 
The primary objective of this research is to design and 
evaluate an AI-powered NOC alert triage and 
escalation system that overcomes the limitations of 
conventional approaches. The specific objectives are 
as follows. 
1. Design a microservice-based architecture that 
enables scalable, modular, and fault- 
tolerant alert processing. 
2. Implement automated alert triage, reduplication, 
and time-based escalation mechanisms. 
 
 
 

 
3. Integrate LLM-based incident summarization and 
contextual knowledge enrichment into the alert life-
cycle. 
4. Evaluate the impact of automation and AI 
integration on operational efficiency using 
quantitative performance metrics. 
 
2.4 Research Questions 
This study is guided by the following research 
questions: 
• How does a microservice-based architecture 
improve the scalability and reliability of NOC alert 
management systems? 
• To what extent does automated escalation reduce 
response times compared to manual procedures? 
• How effectively do LLM-generated summaries 
enhance situational awareness and decision making 
for NOC operators 
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2.5 Structure of the Paper 
The remainder of this paper is organized as follows. 
Section [2] reviews related work on alert management, 
escalation strategies, and AI-driven incident analysis. 
Section [3] describes the architecture of the system 
and the research methodology. Section [4] outlines 
the implementation details and experimental setup. 
Section [5] presents the results and performance 
evaluation. Section [6] discusses the key findings and 
practical implications. Section [7] highlights 
limitations and future research directions. Finally, 
Section [8] concludes the paper. 
 
3 Literature Review 
Early Network Operations Center (NOC) systems 
were primarily built around Simple Network 
Management Protocol (SNMP) traps, syslog messages, 
and static threshold-based alarms. These systems 
focused on detecting deviations from predefined 
performance metrics, such as CPU utilization, 
memory consumption, or packet loss. Although 
effective for small scale and relatively stable networks, 
they lacked the adaptability required for modern, 
dynamic, and heterogeneous environments. 
To address alert overload, alert correlation engines 
were introduced to group related alarms and suppress 
duplicates. However, most correlation mechanisms 
relied on manually defined rules that required 
continuous maintenance and domain expertise. As 
network infrastructures evolved in scale and 
complexity, rule-based systems struggled to adapt to 
new device types, distributed architectures, and 
emerging failure patterns. Alert fatigue has been 
extensively studied in both the healthcare and IT 
operations domains. Research indicates that high 
volumes of false positives significantly reduce operator 
response and increase cognitive load. In large-scale 
NOC environments, operators may receive hundreds 
of alerts per hour, many of which are redundant or 
non-actionable. This overload often 
results in delayed responses to critical incidents and 
an increased likelihood of human error Several 
mitigation strategies, including alert prioritization and 
severity reclassification, have been proposed. 
However, these approaches frequently depend on 
static severity definitions that do not adequately 
reflect the real-time operational context. 

Consequently, even high severity alerts may lack 
sufficient diagnostic detail to enable rapid resolution. 
Machine learning (ML) techniques have been applied 
to anomaly detection, root cause analysis, and alert 
correlation. Supervised and unsupervised models 
have demonstrated effectiveness in identifying 
abnormal patterns and reducing false positives. 
Clustering algorithms and graph-based approaches are 
commonly used to correlate alerts across 
interconnected network components. Despite these 
advances, many ML based solutions primarily focus 
on detection rather than response management. They 
often function as standalone modules that generate 
additional alerts or risk scores, inadvertently 
increasing the complexity of the system. Integration 
with escalation workflows and operator-facing 
decision-support interfaces remains limited. Large 
Language Models (LLMs) have recently demonstrated 
strong capabilities in natural language understanding, 
reasoning, and summarization. Emerging research 
explores their application in log analysis, incident 
summarization, and conversational IT support 
systems. LLMs can synthesize information from alerts, 
logs, and documentation to generate human readable 
explanations that improve situational awareness. 
However, challenges related to latency, reliability, and 
explainability must be addressed before deploying 
LLMs in real-time operational systems. Retrieval-
Augmented Generation (RAG) has been proposed as 
a method to ground LLM outputs in verified 
knowledge bases, thereby improving factual 
consistency and reducing hallucinations. 
While prior research addresses isolated components 
of alert management such as detection, correlation, or 
summarization there is a gap in comprehensive 
systems that integrate automated escalation, AI-driven 
contextual analysis, and resilient architectural design 
within a unified framework. 
This research addresses this gap by proposing an end- 
to-end NOC alert triage and escalation system that 
combines microservices, asynchronous event driven 
processing, persistent scheduling, and LLM based 
intelligence. The proposed approach emphasizes 
scalability, reliability, and contextual awareness, 
which are critical requirements for modern enterprise 
level NOC environments 
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4 Methodology 
4.1 Research Design 
This research adopts a system-oriented quantitative 
design focused on the development, implementation 
and evaluation of an AI-powered alert triage and 
escalation framework for Network Operations 
Centers (NOCs). Instead of proposing a purely 
conceptual model, this study presents a fully 
functional prototype deployed in a controlled 
experimental environment. 
The system performance is evaluated using 
quantitative operational metrics, including Mean 
Time to Acknowledge (MTTA), escalation accuracy, 
alert reduplication rate, and notification reliability. 
The methodology is structured into four primary 
phases: 
1. System requirement analysis 
2. Architectural design 
3. Implementation of alert processing, escalation 
mechanisms, and AI-driven analysis 
4. Experimental evaluation 

This phased structure ensures traceability between 
research objectives, architectural components, and 
evaluation outcomes. 
 
4.2 System Architecture Overview 
The proposed solution follows a microservice-based 
architecture to ensure modularity, scalability, and 
fault tolerance. The core components include: 
• A FastAPI-based alert ingestion service for 
normalization, persistence, and orchestration. 
• An asynchronous AI processing service for LLM-
based summarization and embedding 
generation. 
• RabbitMQ for non-blocking inter-service 
communication. 
• PostgreSQL for persistent storage of alerts and 
escalation schedules. 
• A multi-channel notification layer supporting email 
and WhatsApp alerts. 
 

 
Figure 2: Overall architecture of the AI-powered NOC alert triage and escalation system 

 
This architectural separation guarantees that time-
critical ingestion and escalation processes are never 
blocked by computationally intensive AI operations. 
Alerts are ingested through a RESTful webhook 
endpoint implemented using FastAPI. 
Incoming alerts conform to a predefined schema and 
are normalized to ensure consistency across 
heterogeneous monitoring sources. The 
normalization process standardizes severity levels,  

 
timestamps, device identifiers, and team ownership 
metadata. Alerts are classified into actionable and 
non-actionable categories using predefined critical 
alert patterns. Non-critical alerts are stored for 
auditing purposes but marked as invalid to prevent 
unnecessary operator intervention. This early filtering 
mechanism significantly reduces alert noise. 
Additionally, alerts are written to structured text files 
during ingestion, creating an immutable snapshot of 
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the payload for forensic analysis, offline review, and 
regulatory compliance. 
Once persisted, alerts are forwarded to an orchestrator 
module responsible for managing 
the alert lifecycle. Duplicate detection is performed 
using external alert identifiers. If a duplicate is 
detected, it is marked accordingly and excluded from 
further processing. Valid alerts are immediately 
transitioned to the IN-PROGRESS state and assigned 
an initial escalation level based on team-specific 
configurations, ensuring early ownership and 
accountability. 
A key contribution of this research is the 
implementation of a persistent, time-based 
escalation mechanism using APScheduler with a 
database-backed job store. Escalation policies are 
defined in an external JSON-based escalation matrix, 
allowing administrators to configure time thresholds 
and notification recipients per team and escalation 
level. When an alert enters the IN-PROGRESS state, 
escalation jobs are dynamically scheduled. If the alert 
remains unresolved within the configured time 
threshold, it is automatically escalated (e.g., from 
Level 1 to Level 2), and notifications are triggered 
accordingly. Since the scheduler uses persistent 
storage, all escalation jobs survive service restarts, 
ensuring operational reliability. 

The system also supports agentic execution of 
predefined diagnostic plans. Each alert category is 
mapped to a structured execution plan containing 
diagnostic commands and verification steps. Plans are 
contextualized using alert metadata, and execution 
results are captured for downstream analysis. 
Integration with external network management 
platforms enriches alerts with topology-level and 
device-specific context, improving situational 
awareness and enabling more accurate root cause 
analysis. 
Alert data, diagnostic outputs, and enrichment results 
are asynchronously forwarded to an LLM-based AI 
service. The AI component generates structured, 
human-readable incident summaries and stores vector 
embeddings in a Retrieval-Augmented Generation 
(RAG) knowledge base. Notification delivery is 
handled through email and WhatsApp channels. 
Initial alerts are sent to Level 1 responders, while 
subsequent notifications are triggered automatically 
during escalation stages. Resolved alerts are archived 
after a configurable retention 
period. Archived records are stored separately to 
maintain database performance while preserving 
historical data for compliance and analytical 
evaluation. 

 

 
Figure 3: Alert status lifecycle in persistent storage 
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4.3 Evaluation Metrics 
The system performance is evaluated using the 
following quantitative metrics: Mean Time to 
Acknowledge (MTTA): 

 

 

 
Figure 4: Duplicate alert handling workflow 

 
Deduplication Rate: 
 𝑫𝒆𝒅𝒖𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏  =

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒖𝒑𝒍𝒊𝒄𝒂𝒕𝒆𝒔 𝒅𝒆𝒕𝒆𝒄𝒕𝒆𝒅

𝑻𝒐𝒕𝒂𝒍 𝒂𝒍𝒆𝒓𝒕𝒔
× 𝟏00     (1) 

 
Escalation Accuracy: 
 

      𝑬𝒔𝒄𝒂𝒍𝒂𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝒆𝒔𝒄𝒂𝒍𝒂𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝒆𝒔𝒄𝒂𝒍𝒂𝒕𝒊𝒐𝒏𝒔
× 100    (2) 

 
 
Notification Reliability: 
 
𝑫𝒆𝒍𝒊𝒗𝒆𝒓𝒚  𝒓𝒂𝒕𝒆 =

𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍 𝒏𝒐𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒐𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔
× 100               (3)     

 
 
 

 
Figure 5: Execution of time-based escalation matrix 
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5 Implementation 
5.1 Asynchronous Message Queue Design 
The alert processing pipeline relies on an 
asynchronous message queue implemented using  
 
RabbitMQ and the aio-pika client library. The queue-
based design decouples alert ingestion from alert 
processing, enabling horizontal scalability and fault  
 

isolation. The queue.py module defines both a 
publisher and a consumer, ensuring reliable delivery 
and processing of alert messages. 
The publish alert function serializes incoming alert 
payloads in JSON format and publishes them to a 
durable message queue with persistent delivery mode 
enabled. This guaranty that alerts are not lost in the 
event of broker or service failures. The use of connect 
robust further enhances system resilience by 
automatically re-establishing the connection to the 
message broker if an interruption occurs. 
 

 

 
Figure 6: Asynchronous queue communication using RabbitMQ. 

 
 
Table 1: Methodological Phases and System Components 

Phase Associated Components 

Requirement Analysis Alert lifecycle modeling, escalation matrix 

Architectural Design Microservices, RabbitMQ, PostgreSQL 

Implementation FastAPI, APScheduler, LLM Integration 

Evaluation MTTA, Reduplication Rate, Escalation Accuracy 

5.2 Alert Processing Orchestration 
Once a message is consumed from the queue, the 
payload is passed to the process alert function within 
the orchestrator service. This function represents the 
core of the alert lifecycle management logic. It 
performs validation, reduplication, state transitions, 

and initiates downstream workflows such as escalation 
scheduling and agentic plan execution. 
The orchestrator operates within an asynchronous 
SQLAlchemy session. This design enables non-
blocking database interactions while maintaining 
transactional consistency. After successful processing, 
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the session is explicitly committed to persist all state 
changes. In the event of an exception, message 
acknowledgment is deferred, allowing built-in retry 
mechanisms to handle transient failures. 
 
5.3 Ollama Response Handling 
Architecture 
To integrate Large Language Model (LLM) capabilities 
without impacting real-time alert handling, AI-related 
tasks are processed asynchronously through a 
dedicated response handler. The 

OllamaResponseHandler class consumes responses 
from a separate queue (ollama.responses) and 
processes summarization and embedding results 
independently of the main alert pipeline. 
Each AI request is associated with a unique request 
identifier and alert identifier. This mapping allows 
responses to be correlated with the originating alert. 
Upon receiving a response, the handler inspects the 
request type (summarization or embedding) and 
delegates processing to the appropriate internal 
method 

 
Figure 7: Ollama AI responses stored in the database 

 
5.4 AI-Generated Incident Summarization 
For summarization responses, the handler retrieves 
the corresponding alert record from the database and 
updates it with the generated summary. This summary 
provides a concise, human-readable description of the 
incident, combining alert metadata, diagnostic 
outputs, and contextual reasoning produced by the 
LLM. 
After persisting the summary, the system triggers a 
notification workflow to disseminate the information 
to the relevant response team. This ensures that 
operators receive actionable insights without 
manually analyzing raw logs or command outputs. 
 
5.5 Embedding Generation and RAG 
Storage 
Following summarization, the system automatically 
requests vector embeddings for the generated 
summary. These embeddings are stored in a Retrieval-
Augmented Generation (RAG) knowledge base using  

 
the store chunk service. Each stored chunk includes 
rich metadata such as alert title, team, severity, device 
information, and occurrence timestamp. This design 
enables future incidents to leverage historical context 
through semantic similarity search. By grounding 
LLM responses in previously resolved incidents, the 
system improves consistency and reduces 
hallucination risks. 
 
5.6 Notification Service Implementation 
The notification subsystem uses asynchronous SMTP 
communication via the aiosmtplib library. Email 
alerts are generated using Jinja2 templates, allowing 
dynamic insertion of alert details, diagnostic steps, 
and AI-generated summaries. In addition to sending 
emails, the notification service persists a copy of each 
alert message to the file system, providing an audit 
mechanism and enabling offline review and 
debugging. SMTP configuration parameters are 
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dynamically loaded from environment variables to 
support flexible deployment across environments. 
 
5.7 Agentic Diagnostic Execution Engine 
To automate root cause investigation, the system 
includes an agentic execution engine implemented in 
the agent.py module. Diagnostic plans consist of 
ordered command sequences defined in external 
JSON configuration files. Each command may 
include placeholders dynamically substituted using 
the alert-specific context. The execute plan function 
iterates through command steps and executes them 

asynchronously. Platform-specific execution paths 
ensure compatibility with both Windows and Unix 
like systems. Command outputs, return codes, and 
error messages are captured in structured form, 
enabling downstream analysis by both human 
operators and AI models. Timeout mechanisms and 
error handling logic prevent long-running commands 
from blocking workflows, balancing automation 
benefits with operational safety.  
 
 

 
Figure 8: External context enrichment using MCP server tools 

 
5.8 Security and Fault Tolerance 
Considerations 
Security considerations include controlled execution 
of diagnostic commands, strict input validation, and 
isolation of AI services from core operational 
workflows. Durable queues, persistent job stores, and 
idempotent processing ensure the system can recover 
gracefully from failures without data loss. 
 
5.9 Summary of Implementation 
Contributions 
The implementation demonstrates a production-
grade integration of asynchronous messaging, 
persistent escalation, agentic automation, and AI-
driven analysis. By aligning system design with real-
world NOC operational requirements, the proposed 
solution bridges the gap between academic research 
and practical deployment. 
 
 

 
5.10 Ollama AI Processing Service 
Implementation 
A key architectural decision is the separation of AI 
processing into an independent microservice, referred 
to as the Ollama Processing Service. This design 
addresses latency isolation, fault containment, and 
scalability. LLM inference and embedding generation 
are computationally expensive and can degrade the  
 
responsiveness of time-sensitive alert handling if 
executed synchronously. By isolating AI workloads 
into a separate FastAPI-based service, the system 
ensures that alert ingestion, escalation, and 
notification pipelines remain deterministic and 
responsive even under heavy AI processing loads. This 
architecture also allows independent scaling of 
AI resources based on demand. 
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5.11 Service Lifecycle Management and 
FastAPI Integration 
The Ollama service uses FastAPI and an asynchronous 
lifespan context manager to manage 
startup and shutdown behavior. During initialization, 
the application conditionally launches 
an AMQP consumer in the background, preventing 
startup from blocking if the message broker is 
unavailable. 
The lifespan manager ensures graceful shutdown by 
canceling the consumer task and awaiting 
termination, which is critical in production 
deployments with frequent restarts. 
 
5.12 Health Monitoring and Observability 
The service exposes lightweight HTTP endpoints for 
health checks, allowing orchestration platforms like 
Kubernetes or Docker Compose to verify service 
availability without invoking AI workloads. Logging is 
configured using environment-driven log levels to 
support flexible verbosity across environments. 
 
5.13 Ollama Processor Design 
The core AI functionality is encapsulated within the 
OllamaProcessor class, which abstracts interactions 
with the Ollama inference server and supports 
summarization and embedding generation. 
Configuration parameters such as model selection 
and base URLs are externalized via environment 
variables, promoting portability and reproducibility. 
 
5.14 Prompt Engineering for Incident 
Summarization 
Summarization requests are constructed using 
structured prompts that combine alert meta- 
data with diagnostic command outputs. Prompts 
instruct the model to produce concise, technical 
summaries suitable for NOC operators, improving 
consistency and relevance. An asynchronous HTTP 
client with extended timeouts accommodates variable 
inference latencies. Failures degrade gracefully, 
returning fallback summaries instead of interrupting 
the alert lifecycle. 
 
 

5.15 Embedding Generation for Semantic 
Memory 
For embedding generation, the processor interacts 
with Ollama’s embedding API to transform textual 
summaries into high-dimensional vector 
representations. These embeddings form the 
foundation of the RAG capability, enabling semantic 
similarity search across historical incidents. Robust 
exception handling ensures that transient errors or 
missing models do not propagate failures upstream. 
 
5.16 Asynchronous Request Consumption 
Incoming AI requests are processed by the 
OllamaConsumer component, which listens on the 
ollama.requests queue. Each message contains a 
request identifier, alert identifier, request type, and 
data payload. The consumer dispatches requests to the 
appropriate processor method and logs detailed 
diagnostics. After processing, responses are published 
to the ollama.responses queue, decoupling AI 
computation from downstream persistence and 
notification logic. 
 
5.17 Persistence of AI Outputs 
AI-generated summaries are persisted to the file 
system in a structured, human-readable format, 
providing an immutable record for auditing, 
debugging, and offline analysis. 
 
5.18 Response Publishing and Reliability 
Guaranties 
The response publishing mechanism uses durable 
queues and persistent message delivery to ensure AI 
results are reliably delivered to the main alert service. 
AMQP connections are closed after publishing to 
prevent resource leaks. 
 
5.19 Architectural Implications 
The Ollama service demonstrates how LLM-based 
intelligence can be safely integrated into operational 
systems using asynchronous messaging and 
microservice isolation. This approach mitigates 
common risks such as latency amplification and 
cascading failures while preserving 
the benefits of automated reasoning and 
summarization 
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6 Results 
The implemented AI-powered NOC Alert Triage and 
Escalation System was evaluated in a controlled 
experimental environment designed to simulate real-
world network operations. The evaluation focused on 
multiple operational metrics, including Mean Time to 
Acknowledge (MTTA), alert reduplication accuracy, 
escalation effectiveness, and the utility of AI-generated 
incident summaries. The results indicate that 
integrating microservices, asynchronous messaging, 
and Large Language Model (LLM)-based intelligence 

significantly improves alert management efficiency, 
reduces operator workload, and enhances situational 
awareness. The severity distribution demonstrates 
that CRITICAL and HIGH alerts represent the most 
operationally significant incidents, while MEDIUM 
and LOW alerts contribute substantially to overall 
alert volume. This underscores the need for 
automated prioritization 
and escalation mechanisms. One of the primary 
objectives of the system was to ensure that incoming 
alerts are processed in real time, even when AI-driven 
summarization and embedding generation tasks are 

 
Figure 9: Distribution of Alerts by Severity Level 

 
computationally intensive. The FastAPI-based Alert 
Ingestion and Orchestration Service successfully 
ingested and normalized all alerts. System logs 
indicated that alert ingestion latency remained below 
50 milliseconds per event on average, confirming the  
 

 
suitability of the architecture for enterprise-scale 
NOC operations. To evaluate system behavior under 
varying alert loads, a temporal analysis of daily alert 
volume was conducted. 
 
 

 
Figure 10: Daily Alert Volume Over Time 
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The time-series analysis shows fluctuations 
corresponding to simulated stress scenarios; ingestion 
latency remained stable due to asynchronous 
decoupling via RabbitMQ. Duplicate alerts are a 
common source of alert fatigue in traditional NOC 
environments. In the experimental setup, deliberately  
 

 
injected duplicate alerts were used to test the 
reduplication mechanism. The orchestrator’s 
duplicate detection algorithm successfully identified 
and filtered 95% of duplicate alerts, significantly 
reducing operator cognitive overload. To evaluate 
escalation workflow effectiveness, alerts were analyzed 
across escalation levels. 

 
Figure 11: Distribution of Alerts by Escalation Level 

 
The majority of alerts were resolved at Level 1, while 
a smaller subset required escalation to higher tiers, 
demonstrating effective early-stage intervention. 
Scalability and fault tolerance were key evaluation 
criteria. Stress tests involving spikes of up to 500 alerts 
per minute showed: 
• No message loss 
• Minimal processing delay 
• Stable AI integration 
To assess resolution performance improvements, the 
average alert duration per status category was  

 
calculated. The results demonstrate shorter resolution 
times for alerts processed under automated 
workflows, confirming reductions in MTTA and 
MTTR compared to traditional manual 
handling. Embedding generation and storage in the 
RAG knowledge base enabled semantic retrieval of 
historical incidents. When similar alerts reoccurred, 
operators leveraged prior AI summaries to reduce 
repetitive analysis. This capability effectively 
transforms the NOC 
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Figure 12: Average Alert Duration by Status 
 
into a knowledge-enhanced operational environment. 
Notifications were tested across email and WhatsApp 
channels. Delivery confirmation averaged under 30 
seconds for Level 1 notifications, ensuring rapid  
 
 
 

 
acknowledgment. Escalation notifications were 
automatically triggered according to persistent 
scheduling rules without human intervention, 
ensuring SLA compliance. To evaluate alert lifecycle 
transitions across severity categories, a cross-tabulated 
severity-versus-status analysis was performed. 
 

 

 
Figure 13: Severity vs Status Distribution 

 
The visualization confirms that higher-severity alerts 
exhibit greater escalation frequency, while lower-
severity alerts are predominantly filtered or resolved at 
early stages. A distinguishing feature of the system is 
its integration of LLM-based summarization and 
Retrieval-Augmented Generation (RAG) for 
knowledge enrichment. Upon ingestion, diagnostic 
outputs and contextual metadata were processed  

 
asynchronously by the Ollama AI service. The LLM 
generated concise, human-readable summaries 
including probable root causes and recommended 
actions. Operator feedback collected during 
experimental trials indicates that AI-generated 
summaries reduced incident comprehension time by 
approximately 40–50%, significantly improving 
response efficiency. To examine longer-term 
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operational trends, a monthly comparison of total 
alert volume was conducted. 

 

 
Figure 14: Monthly Alert Trends 

 
The monthly distribution validates the system’s ability 
to maintain consistent performance under varying 
operational loads. 
The experimental evaluation confirms that the 
proposed AI-powered NOC system achieves its 
primary objectives: 
• Reduced alert fatigue 
• Accelerated acknowledgment and resolution 
• Improved situational awareness 
 
 

 
• Scalable, fault-tolerant performance 
By combining real-time processing, automated 
escalation, and AI-driven summarization, the system 
bridges the gap between conventional rule-based alert 
management and intelligent, context-aware 
operations. These results provide strong empirical 
evidence supporting the integration of microservices, 
asynchronous messaging, and LLM intelligence in 
modern NOC environments. 
 

 
Figure 15: Alert Trends by Severity Over Time 

 
The line chart illustrates daily alert counts for 
CRITICAL, HIGH, MEDIUM, LOW, MAJOR, and 
other priority classifications, enabling analysis of  

 
operational intensity and severity fluctuations over 
time. The results indicate observable spikes in HIGH 
and CRITICAL alerts, particularly during mid-
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January 2026, corresponding to simulated peak-load 
and stress-test conditions. Despite these increases, the 
system maintained stable ingestion and processing 
performance due to its asynchronous microservice 
architecture, demonstrating 
the robustness of the decoupled alert ingestion and 
AI-processing pipeline. The results indicate that core 
infrastructure components, particularly firewall and 
storage servers, produced the greatest alert volume. 
Application and database servers also contributed 
significantly, while switching and authentication 

devices generated comparatively fewer alerts. This 
distribution highlights that a limited number of 
devices account for a substantial portion of overall 
alert activity, emphasizing the importance of targeted 
monitoring and proactive maintenance in reducing 
alert noise. 
Overall, the temporal severity trend analysis validates 
the scalability, responsiveness, and prioritization 
effectiveness of the proposed AI-powered NOC Alert 
Triage and Escalation System 

 
Figure 16: Alert Distribution Across Core Infrastructure Devices 

 
Table 2: Key Evaluation Metrics of the AI-powered NOC System 

Metric Result 
Mean Time to Acknowledge (MTTA) 45 sec (avg) 

Duplicate Alert Reduction 95% 

Escalation Level 1 Resolution 78% 

Escalation Level 2+ Resolution 22% 

AI-generated Summary Effectiveness Reduced comprehension time by 40–50% 

Notification Delivery (Level 1) 30 sec 

Peak Load Handling 500 alerts/min without message loss 

7 Discussion 
The experimental results demonstrate that integrating 
persistent automated escalation with AI-driven 
summarization significantly improves operational 

performance in Network Operations Centers 
(NOCs). Quantitative evaluation indicates 
measurable reductions in Mean Time to Acknowledge 
(MTTA), improved duplicate detection accuracy, and 
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enhanced notification reliability under varying alert 
loads. These improvements can be attributed to 
architectural decoupling, asynchronous processing, 
and context-enriched AI reasoning. 
From a systems perspective, the microservice-based 
architecture contributes directly to scalability and 
fault isolation. Let λ represent the incoming alert rate 
(alerts per minute) and μ represent the average 
processing rate of a single service instance. In 
traditional monolithic systems, system stability 
requires λ < μ. However, in the proposed distributed 
architecture, horizontal scaling allows the effective 
processing rate to become nμ, where n represents the 
number of service replicas. This ensures that the 
system remains stable under burst conditions (λ < nμ), 
thereby reducing queue buildup and acknowledgment 
latency. The use of asynchronous message queues 
further improves throughput and responsiveness. By 
decoupling alert ingestion from AI inference, the 
system prevents latency amplification caused by 
computationally expensive LLM operations. 
Experimental observations confirm that ingestion 
latency remained consistently low even during peak 
AI workload conditions. 
This validates the design hypothesis that isolating 
inference-heavy components into independent 
microservices mitigates cascading delays and preserves 
real-time alert handling guarantees. 
Beyond infrastructure performance, the integration of 
LLM-generated incident summaries enhances 
cognitive efficiency for operators. Traditional alert 
systems require manual log inspection and 
correlation, increasing cognitive load and decision 
latency. In contrast, AI-generated summaries 
synthesize diagnostic outputs, enrichment data, and 
historical knowledge into structured, human-readable 
explanations. Operator feedback and response-time 
measurements suggest a statistically significant 
reduction in incident comprehension time. 
If Tm represents the average manual analysis time and 
Tai represents AI-assisted analysis time, experimental 
results indicate that Tai < Tm, with observed 
reductions ranging between 40–50% under 
controlled conditions. 
However, the reliability of AI-generated insights 
remains dependent on input data quality. Let Qi 
denote input data completeness and Qo denote 
output summary reliability. Empirical observation 

suggests a positive correlation between Qi and Qo, 
highlighting the importance of accurate alert 
metadata, well-structured diagnostic plans, and timely 
enrichment data. 
In incomplete or ambiguous scenarios, the probability 
of partial or suboptimal AI reasoning increases. 
Therefore, human validation remains essential, 
particularly for high-severity or safety-critical 
incidents. 
The integration of persistent, database-backed 
escalation policies introduces formal reliability 
guarantees into the alert lifecycle. Unlike in-memory 
schedulers, persistent job stores ensure that escalation 
state survives service restarts. If Pf represents system 
failure probability and Rp represents recovery 
persistence, traditional volatile schedulers exhibit Rp 
≈ 0 during restarts, whereas the   architecture 
maintains Rp ≈ 1, ensuring no escalation loss. This 
significantly enhances SLA compliance and 
operational accountability. The agentic diagnostic 
execution engine further strengthens incident 
management consistency. By enforcing structured 
diagnostic workflows, the system reduces variability 
caused by operator experience differences. Escalation 
thresholds defined through configurable matrices 
introduce deterministic state transitions, ensuring 
predictable behavior across teams and environments. 
When combined with LLM-powered summarization 
and Retrieval-Augmented Generation (RAG), the 
system enables knowledge continuity across incidents. 
Historical embeddings allow semantic similarity 
matching, effectively transforming prior resolutions 
into reusable operational intelligence. Despite these 
advantages, several operational considerations 
remain. First, LLM latency variability must be 
continuously monitored to prevent resource 
saturation. Second, prompt engineering strategies 
require periodic refinement to maintain summary 
relevance and minimize hallucination risk. Third, 
automated remediation should be introduced 
cautiously to avoid unintended cascading effects in 
complex network environments. Overall, the findings 
indicate that a coordinated integration of 
microservices, asynchronous communication, 
persistent escalation scheduling, agentic diagnostics, 
and LLM-driven reasoning produces a resilient, 
scalable, and context-aware NOC framework. The 
system successfully balances automation with human 
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oversight, enhancing operational efficiency while 
preserving safety, transparency, and adaptability. 
These results support the broader hypothesis that AI-
augmented operational infrastructures can 
significantly reduce alert fatigue, accelerate response 
times, and enable data-driven decision-making in 
large-scale network environments. 
 
8 Conclusion and Future Work 
This study presents an AI-driven NOC Alert Triage 
and Escalation System that integrates microservices, 
asynchronous messaging, autonomous diagnostic 
processes, and Large Language Models (LLMs). The 
system effectively mitigates alert fatigue, reduces 
response times, and enhances situational awareness by 
delivering operators actionable and contextually 
enriched insights. Its microservice-based design and 
durable escalation protocols guarantee scalability, 
reliability, and robustness in operational 
environments. Future work will focus on extending 
the system with predictive escalation capabilities, 
enabling proactive alert handling based on historical 
patterns and AI-driven forecasting. Adaptive learning 
mechanisms will be incorporated to continuously 
refine alert classification, reduplication, and 
escalation strategies based on operator feedback and 
incident outcomes. Additionally, automated 
remediation workflows will be explored to allow the 
system to autonomously resolve routine incidents, 
further reducing MTTR and operational overhead 
while maintaining human oversight for complex cases. 
These enhancements aim to create a fully intelligent 
and self-optimizing NOC framework capable of 
managing increasingly complex and dynamic network 
environments. Although the AI-powered NOC Alert 
Triage and Escalation System introduce significant 

improvements in operational efficiency, several 
enhancements can further extend its capabilities: 
1. Predictive Scaling: Incorporate machine learning 
models to anticipate incidents before they occur, 
enabling proactive alerting and reducing MTTA. 
2. Adaptive Learning: Continuously refine alert 
classification, reduplication, and escalation strategies 
based on historical incident data and operator 
feedback. 
3. Automated Remediation: Develop autonomous 
workflows for routine incident resolution, allowing 
the system to take corrective actions without human 
intervention while maintaining oversight for complex 
scenarios. 
4. Integration with Additional Monitoring Platforms: 
Expand data sources to include heterogeneous 
network and application monitoring tools for richer 
context and improved AI-driven reasoning. 
5. Enhanced LLM Explainability: Improve the 
transparency of AI-generated summaries and 
recommendations, providing operators with 
interpretable reasoning to build trust in automated 
decision-making. 
6. Scalability and Multi-Tenant Support: Optimize the 
system for large-scale, multitenant environments, 
enabling centralized management of multiple NOCs 
or departments. 
7. Real-Time Feedback Loops: Implement 
mechanisms for operators to provide immediate 
feedback on AI summaries and escalation actions, 
supporting continuous system improvement. 
These directions collectively aim to create a fully 
intelligent, self-optimizing NOC frame-work capable 
of handling increasingly complex and dynamic 
network environments, while balancing automation 
with essential human oversight 
 

 
Table 3: Planned Enhancements and Expected Benefits for AI-Powered NOC System 

Enhancement Expected Benefit 
Predictive Scaling Reduce MTTA by anticipating incidents 

Adaptive Learning Improved classification, reduced false positives 

Automated Remediation Decrease MTTR, reduce manual workload 

Integration with Additional Monitoring 
Platforms 

Richer alert context, better AI reasoning 
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Enhanced LLM Explainability Increased operator trust and adoption 

Scalability and Multi-Tenant Support Centralized management of multiple NOCs 

Real-Time Feedback Loops Continuous system improvement and models refine 
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