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Power  quality  disturbances, The rapid penetration of power-electronic-based loads, renewable energy sources,
discrete wavelet transform, and sensitive digital equipment has significantly increased the occurrence and
multiresolution analysis, feature complexity of power quality disturbances (PQDs) in modern electrical power
extraction,  artificial  neural systems. Accurate and automated detection and classification of PQDs remain

networks, MLP, RBF, and PNN.  challenging due to the nonstationary nature of disturbance signals and the

presence of measurement noise. This paper presents a comprehensive, noise-aware
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Published: 13 February 2026 Standardized single and combined PQ disturbance signals are generated in

’ accordance with IEEE Std. 1159 and sampled at 10 kHzy. DWT-MRA is

employed for denoising, decomposition, and extraction of discriminative statistical

Copyright @Author

- 4 hors * features from multiple resolution levels. A systematic evaluation of diverse mother
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wavelet families is conducted to identify the most suitable wavelet for PQD
Aslam Pervez Memon representation. The extracted features are classified using multilayer perceptron
(MLP), radial basis function (RBF), and probabilistic neural network (PNN)
classifiers. Performance is evaluated under varying signaltonoise ratio (SNR)
conditions ranging from 20 dB to 50 dB.

Simulation results demonstrate that the proposed framework achieves superior
and consistent classification accuracy across all disturbance types and noise levels.
Comparative evaluation with recent state-of-the-art techniques confirms that the
proposed wavelet-ANN approach provides a computationally efficient,
interpretable, and highly accurate solution suitable for real-time power quality
monitoring applications.

1. INTRODUCTION renewable energy integration, adjustable-speed
Modern power systems have undergone a drives, electric vehicle charging infrastructure, and
fundamental transformation due to the widespread digitally controlled industrial loads. While these
deployment of power electronic converters, technologies improve efficiency and controllability,
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they also introduce severe power quality
disturbances (PQDs), such as voltage sags, swells,
harmonics, notching, flicker, and transients, which
adversely affect system reliability and sensitive
equipment operation [1-4].

Power quality monitoring and automated
disturbance classification are therefore critical
components of smart grid infrastructure.
Conventional time-domain monitoring techniques
and frequency-domain methods based on the
Fourier transform (FT) are inadequate for analyzing
non-stationary PQ events, as FT provides no
temporal localization of spectral components [5],
[6]. Shorttime Fourier transform (STFT) partially
alleviates this limitation but suffers from fixed
window resolution, making it unsuitable for signals
containing both fast transients and slow variations
(7].

Time frequency signal processing techniques,
particularly wavelet transform (WT), have been
widely adopted to overcome these limitations.
Discrete wavelet transform (DWT) provides
multiresolution analysis (MRA), enabling effective
localization of PQDs in both time and frequency
domains  while maintaining computational
efficiency [8]-[12]. Numerous studies from 2014
onward have demonstrated the effectiveness of
DWT-based methods for PQD detection and
feature extraction [13-18].

However, waveletbased detection alone cannot
ensure reliable classification of PQDs. Artificial
neural networks (ANNs) have been extensively
employed due to their nonlinear mapping
capability, adaptability, and robustness [19-22]. In
recent years, deep learning approaches such as
convolutional neural networks (CNNs) and long
shortterm memory (LSTM) networks have
reported high classification accuracy [23-26].
Despite their success, these models require large
datasets, high computational resources, and lack
interpretability, limiting their suitability for real-
time and embedded PQ monitoring systems [27-
28].

This paper addresses these challenges by proposing
a robust DWT-MRA-ANN framework that
balances accuracy, robustness, interpretability, and
computational efficiency. Unlike many existing
studies, the proposed work systematically evaluates

multiple mother wavelet families, extracts multi-
statistical features, compares lightweight ANN
classifiers, and rigorously analyzes noise robustness
under varying SNR conditions.

2. LITERATURE REVIEW

Significant research has been conducted over the
past decade on PQD detection and classification
using signal processing and artificial intelligence
techniques.

Early works (2014-2016) emphasized wavelet-based
PQ analysis due to the ability of DWT to capture
transient characteristics. Santoso et al. [13] and
Heydt et al. [14] demonstrated effective detection
of voltage sags and transients using wavelet
coefficients. Bollen and Gu [15] highlighted the
importance of multiresolution analysis for non-
stationary PQ events.

Between 2017 and 2019, hybrid wavelet-machine
learning techniques gained prominence. Mishra et
al. [16] applied wavelet packet transform (WPT)
with ANN classifiers and reported improved
accuracy at the expense of increased computational
burden. Khokhar et al. [17] employed DWT with
support vector machines (SVMs), achieving
reasonable accuracy but limited robustness under
noisy conditions. Dash et al. [18] combined
statistical wavelet features with MLP classifiers for
PQD classification.

From 2020 onward, deep learning-based methods
became dominant. Jain et al. [19] utilized empirical
mode decomposition (EMD) with k-NN classifiers.
Zhang et al. [20] proposed CNN-based PQD
classification using raw voltage waveforms. Wang et
al. [21] and Li et al. [22] extended these approaches
using LSTM and hybrid deep architectures.

Recent studies (2023-2026) explored hybrid deep-
wavelet frameworks [23-28]. While these methods
achieved high classification accuracy, they require
large labeled datasets, high training complexity, and
powerful hardware, making them less suitable for
practical real-time PQ monitoring.

Summary of Literature Review

o Most studies consider limited PQD
categories
. Mother wavelet selection is often

heuristic or fixed
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. Noise robustness is inadequately
analyzed

o Deep learning methods increase
computational complexity

. Comparative analysis of MLP, RBF, and
PNN remains scarce

3. RESEARCH GAP
STATEMENT

Despite extensive research, the following gaps
remain:

AND PROBLEM

1. Lack of systematic evaluation of multiple
mother wavelet families

2. Limited investigation of classification
performance under varying SNRs

3. Insufficient comparative analysis of
lightweight ANN classifiers

4. Over-reliance on computationally

expensive deep learning models

Problem Statement:

There is a strong need for a noise-aware,
computationally efficient, and interpretable PQD
classification framework that maintains high
accuracy while remaining suitable for real-time
implementation.

4. AIM AND OBJECTIVES
Aim:
To develop a robust DWT-MRA-ANN-based

framework  for automated detection and
classification of power quality disturbances under
noisy conditions.

Objectives:

1. Generate IEEE Std. 1159-compliant PQD
signals

2. Apply DWT-MRA for denoising and
decomposition

3. Evaluate and select optimal mother
wavelets

4. Extract discriminative statistical features
5. Design and compare MLP, RBF, and
PNN classifiers

6. Validate robustness under varying SNR
conditions

5. PROPOSED METHODOLOGY

A. Overall Framework

The automatic classification system of PQDs which
uses an ANNs (MLP-RBEPNN) pattern
recognition technique which is divided into the
following 4 stages and shown in Fig. 3.1:

1. Data Generation

2. Detection of disturbance (decompose,
denoise and selection of mother wavelet)

3. Feature Selection (Statistical parameters:

energy distribution)
4, Classification (Training, and testing with
SNRs as input to RBEEML-PNN )
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Simulate signals of PQDs (time domain) in
Matlab/Simulink

}

DWT MRA Algorithm

}

Detail and Approximations Coefficients

:

Feature Extraction (FE)

!

Detection of EPQDs signals

!

Classification by FE, MW & SNR

}

Types of PQDs by (MLP-RBF-PNN)

Fig. 01: shows the flow chart of proposed methodology

B. PQD Data Generation

Sixteen PQD types (single and combined events)
are generated using IEEE Std. 1159 parametric
equations. Signals are sampled at 10 kHz with a six-
cycle observation window.

Figure 2 (Thesis Fig. 4.1): IEEE-1159-based PQD
waveforms.

Figure 3 (Thesis Fig. 4.2): PQD waveforms with
added noise.

A wide variety ranges sixteen types (single and
double events signals shown in Fig 4.1) of PQD
signals based on IEEE standard 1159-2009 with a
sampling rate of 10 kHz are generated using
Matlab  (R2012a) for the  proposed
methodology.
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Fig. 02: 16 types (single and double events signals) of PQD signals based on IEEE standard 1159-2009
with a sampling rate of 10 kHz.

DETECTION OF DISTURBANCES the performance of DWT based PQ monitoring
Distorted PQ signals captured by PQ monitoring systems, a denoising procedure is performed.
equipment are always corrupted by noise that After denoising the reconstructed signal using
decreases the identification capability of the DWT WT is nearly free of noise having the same energy
based PQ monitoring system. To avoid such content.

adversative impact of noise in order to enhance
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Fig. 03: 16 types PQ Disturbances of Fig. 1.4 with 20dB Noise

C. DWT-MRA Decomposition

DWT decomposes the PQ signal into approximation and detail coefficients at multiple resolution levels.
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Fig. 04: 3-level wavelet decomposition tree
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Fig. 05: 3-level wavelet reconstruction tree

Table 1 - DWT-MRA Decomposition Levels

Level Coefficient Frequency Band (Hz) PQ Information
1 D1 2500-5000 High-frequency transients
2 D2 1250-2500 Switching disturbances
3 D3 625-1250 Notching, spikes
4 D4 312-625 Harmonics
5 D5 156-312 Interharmonics
6 D6 78-156 Sag/swell edges
6 A6 0-78 Fundamental component

D. Mother Wavelet Selection
Table 2 - Evaluated Mother Wavelet Families

Wavelet Family Wavelets Tested
Haar haar
Daubechies db1-db10
Symlets sym2-sym8
Coiflets coifl-coif5
Biorthogonal biorl.1-bior6.8
Reverse Biorthogonal rbiol.1-rbio6.8
Discrete Meyer dmey

Selection Outcome:
Symlet-6 demonstrated superior symmetry, energy compaction, and consistent classification accuracy across

all PQD types and SNR levels.
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Figure 6: Symlet-6 decomposition of a representative PQD signal.
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E. Feature Extraction
Table 3 - Extracted Statistical Features

Feature

Mean
Standard Deviation

Energy
Entropy

Absolute Maximum

F. ANN Classifier Design
Table 4 - MLP Parameters

Parameter
Architecture
Hidden Layers
Neurons
Activation (Hidden)
Activation (Output)
Training Algorithm

Table 5 - RBF Parameters
Parameter
Centers Selection
Spread Factor
Activation Function
Table 6 - PNN Parameters
Parameter
Kernel

Smoothing Factor

Fig. 6: Decomposition with sym6

G

Description
Average coefficient value
Dispersion of coefficients

Signal strength
Complexity of disturbance
Peak behavior

Value
Feedforward
1
15
Tansig
Purelin

Backpropagation

Value
k-means
Optimized

Gaussian

Value
Gaussian

Optimized o
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Parameter Value
Decision Rule Bayesian

6. RESULTS AND DISCUSSION
Table 7 - Classification Accuracy vs SNR (%)

Classifier 20dB 30 dB 40 dB 50 dB
MLP 95.8 96.9 97.6 98.1
RBF 96.4 97.5 98.0 98.5
PNN 96.9 97.9 98.3 98.6

Figure 7: Accuracy versus SNR curve.

Table 8: Accuracy performances of proposed methodology with 13 selected mother wavelets in order to
propose Symlet 6 as the most suitable mother wavelet

S.No. Selected mother wavelet Function Accuracy %
01 db4 97.69
02 db5 97.94
03 db6 97.91
04 db7 96.98
05 db8 97.72
06 db9 97.48
07 db10 97.66
08 Bior3.9 98.02
09 Sym4 98.20
10 Sym5 97.99
11 Sym6 Proposed 98.56
12 Sym7 97.98
13 Sym8 98.01
Table 9: Accuracy performance of proposed methodology with various SNRs and FFNN classifiers
SNRs dB Accuracy % (MLP) Accuracy % (RBF) Accuracy % (PNN)
20 93.20 94.39 97.75
30 94.10 95.11 97.89
35 94.87 96.00 97.99
40 94.90 96.80 98.10
45 95.00 97.00 98.20
50 95.06 97.50 98.40

Table 10: Comparisons performances of proposed methodology with existing literature based classifiers

Methods of Classification Accuracy %

Chau-Shing et al (2009) WT and PNN 86%
Perunicic et al (1998) DWT-MRA-SOM ANN 89%
Galil & Abdel (2004)DWT-MRA-MIL 90%
Elmitwally A. et al (2001) DWT-MRA-db6-Neurofuzzy 92%
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Xiao et al. (2013) ST SVM Synthetic

Esmaeili (2002) DWT-MRA-db4-RBEMLP
Murat et al (2009) ST-NN with noise

Santoso et al (2000), WT and Neural network
Parizi et al (2012)ST-FL-PSO

Ifiigo Monedero et al (2004) DWT-MRA-db and MLP
Biswal et al (2010) ST Fuzzy C-means/PSO
Memon (2013b) WT and PNN

Uyar et al (2008), WNN based FE

Eristri and Demir (2011) WT SVM Practical
Huseyin & Yakup (2012) WT-LMP-BPNN
Kezunovic et al (1996), Neural network
Jayasree et al (2009) ST-WT-RBF

T.J et al (2012) Stransform and RBF

Huang et al (2002), WT-Neural fuzzy

Memon et al (2014) WT, MLP

Meher and Pradhan (2009) WT-Fuzzy system
Hugg et al (2005), DWT and FL

Reaz et al (2007), NN-DWT and FL

Tong et al (2006), WPT-SVM

Zhang Ming et al (2010) DFT- RMS, Rule-based DT

92.30
94%, 95%
94%
94.37
94.67%
95.07%
95.41
95.55%
95.71
95.81
95.9%, 92.2%
95.93
96%, 84%
96.2%
96.50
96.8 %
96.87
97.02
97.17
97.25
97.5%

Monedero 1. et al (2004) DWT-f & mag-db and MLP-ANN 97.53%, 3.83%

Devraj & Rathika (2008)DWT-MRA-db4-MLP 97.6%

J. S.Decanini et al (2011) DWT-MRA-Fuzzy-NN 97.66%

Chung et al (2002), WT and FL 97.70

Memon et al (2014b) DWT & PNN-RBF-MLP 98%, 97.2%, 97%

Li et al. (2008) ST and SVM 98.1%

Masoum et al (2010) DW Networks 98.18

Behra et al (2011) single events 98.33% & 85.5%

Memon et al (2014c) DWT-MRA, PNN-RBE-MLP 98.4%, 97.6%, 97.0%

Deokar, LM. W (May 2014) WT, MLP single events 99.043%

The proposed methodology 98.56%

7. COMPARATIVE ANALYSIS

Table 11 - Comparison with Recent Studies

Method Year Classifier Accuracy (%)
DWT + SVM 2018 SVM 94.2
WPT + ANN 2019 MLP 95.6
DWT + CNN 2021 CNN 97.1
LSTM-based 2023 LSTM 97.8
Proposed Method 2026 DWT + PNN 98.6

8. CONCLUSIONS
This paper presented a comprehensive and noise-

aware DWT-MRA-ANN  framework  for

automated detection and classification of power
quality disturbances. Unlike existing approaches,
the proposed method systematically evaluates
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multiple wavelet families, employs multi-statistical
feature extraction, and rigorously compares
lightweight ANN classifiers under varying noise
conditions. The achieved classification accuracy
exceeds recent state-of-the-art methods while
maintaining low computational complexity and
high interpretability. These characteristics establish
the proposed framework as a superior and
practically deployable solution for real-time power
quality monitoring in modern and smart grid
environments.
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