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Abstract 
The rapid penetration of power-electronic-based loads, renewable energy sources, 
and sensitive digital equipment has significantly increased the occurrence and 
complexity of power quality disturbances (PQDs) in modern electrical power 
systems. Accurate and automated detection and classification of PQDs remain 
challenging due to the non-stationary nature of disturbance signals and the 
presence of measurement noise. This paper presents a comprehensive, noise-aware 
hybrid framework integrating discrete wavelet transform (DWT) based 
multiresolution analysis (MRA) with artificial neural network (ANN) classifiers 
for reliable detection and classification of PQDs. 
Standardized single and combined PQ disturbance signals are generated in 
accordance with IEEE Std. 1159 and sampled at 10 kHz. DWT–MRA is 
employed for denoising, decomposition, and extraction of discriminative statistical 
features from multiple resolution levels. A systematic evaluation of diverse mother 
wavelet families is conducted to identify the most suitable wavelet for PQD 
representation. The extracted features are classified using multilayer perceptron 
(MLP), radial basis function (RBF), and probabilistic neural network (PNN) 
classifiers. Performance is evaluated under varying signal-to-noise ratio (SNR) 
conditions ranging from 20 dB to 50 dB. 
Simulation results demonstrate that the proposed framework achieves superior 
and consistent classification accuracy across all disturbance types and noise levels. 
Comparative evaluation with recent state-of-the-art techniques confirms that the 
proposed wavelet–ANN approach provides a computationally efficient, 
interpretable, and highly accurate solution suitable for real-time power quality 
monitoring applications. 
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1. INTRODUCTION 
Modern power systems have undergone a 
fundamental transformation due to the widespread 
deployment of power electronic converters, 

renewable energy integration, adjustable-speed 
drives, electric vehicle charging infrastructure, and 
digitally controlled industrial loads. While these 
technologies improve efficiency and controllability, 
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they also introduce severe power quality 
disturbances (PQDs), such as voltage sags, swells, 
harmonics, notching, flicker, and transients, which 
adversely affect system reliability and sensitive 
equipment operation [1–4]. 
Power quality monitoring and automated 
disturbance classification are therefore critical 
components of smart grid infrastructure. 
Conventional time-domain monitoring techniques 
and frequency-domain methods based on the 
Fourier transform (FT) are inadequate for analyzing 
non-stationary PQ events, as FT provides no 
temporal localization of spectral components [5], 
[6]. Short-time Fourier transform (STFT) partially 
alleviates this limitation but suffers from fixed 
window resolution, making it unsuitable for signals 
containing both fast transients and slow variations 
[7]. 
Time frequency signal processing techniques, 
particularly wavelet transform (WT), have been 
widely adopted to overcome these limitations. 
Discrete wavelet transform (DWT) provides 
multiresolution analysis (MRA), enabling effective 
localization of PQDs in both time and frequency 
domains while maintaining computational 
efficiency [8]–[12]. Numerous studies from 2014 
onward have demonstrated the effectiveness of 
DWT-based methods for PQD detection and 
feature extraction [13–18]. 
However, wavelet-based detection alone cannot 
ensure reliable classification of PQDs. Artificial 
neural networks (ANNs) have been extensively 
employed due to their nonlinear mapping 
capability, adaptability, and robustness [19–22]. In 
recent years, deep learning approaches such as 
convolutional neural networks (CNNs) and long 
short-term memory (LSTM) networks have 
reported high classification accuracy [23–26]. 
Despite their success, these models require large 
datasets, high computational resources, and lack 
interpretability, limiting their suitability for real-
time and embedded PQ monitoring systems [27-
28]. 
This paper addresses these challenges by proposing 
a robust DWT–MRA–ANN framework that 
balances accuracy, robustness, interpretability, and 
computational efficiency. Unlike many existing 
studies, the proposed work systematically evaluates 

multiple mother wavelet families, extracts multi-
statistical features, compares lightweight ANN 
classifiers, and rigorously analyzes noise robustness 
under varying SNR conditions. 
 
2. LITERATURE REVIEW 
Significant research has been conducted over the 
past decade on PQD detection and classification 
using signal processing and artificial intelligence 
techniques. 
Early works (2014–2016) emphasized wavelet-based 
PQ analysis due to the ability of DWT to capture 
transient characteristics. Santoso et al. [13] and 
Heydt et al. [14] demonstrated effective detection 
of voltage sags and transients using wavelet 
coefficients. Bollen and Gu [15] highlighted the 
importance of multiresolution analysis for non-
stationary PQ events. 
Between 2017 and 2019, hybrid wavelet–machine 
learning techniques gained prominence. Mishra et 
al. [16] applied wavelet packet transform (WPT) 
with ANN classifiers and reported improved 
accuracy at the expense of increased computational 
burden. Khokhar et al. [17] employed DWT with 
support vector machines (SVMs), achieving 
reasonable accuracy but limited robustness under 
noisy conditions. Dash et al. [18] combined 
statistical wavelet features with MLP classifiers for 
PQD classification. 
From 2020 onward, deep learning-based methods 
became dominant. Jain et al. [19] utilized empirical 
mode decomposition (EMD) with k-NN classifiers. 
Zhang et al. [20] proposed CNN-based PQD 
classification using raw voltage waveforms. Wang et 
al. [21] and Li et al. [22] extended these approaches 
using LSTM and hybrid deep architectures. 
Recent studies (2023–2026) explored hybrid deep–
wavelet frameworks [23–28]. While these methods 
achieved high classification accuracy, they require 
large labeled datasets, high training complexity, and 
powerful hardware, making them less suitable for 
practical real-time PQ monitoring. 
 
Summary of Literature Review 
• Most studies consider limited PQD 
categories 
• Mother wavelet selection is often 
heuristic or fixed 
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• Noise robustness is inadequately 
analyzed 
• Deep learning methods increase 
computational complexity 
• Comparative analysis of MLP, RBF, and 
PNN remains scarce 
 
3. RESEARCH GAP AND PROBLEM 
STATEMENT 
Despite extensive research, the following gaps 
remain: 
1. Lack of systematic evaluation of multiple 
mother wavelet families 
2. Limited investigation of classification 
performance under varying SNRs 
3. Insufficient comparative analysis of 
lightweight ANN classifiers 
4. Over-reliance on computationally 
expensive deep learning models 
 
Problem Statement: 
There is a strong need for a noise-aware, 
computationally efficient, and interpretable PQD 
classification framework that maintains high 
accuracy while remaining suitable for real-time 
implementation. 
 
4. AIM AND OBJECTIVES 
Aim: 
To develop a robust DWT–MRA–ANN-based 

framework for automated detection and 
classification of power quality disturbances under 
noisy conditions. 
 
Objectives: 
1. Generate IEEE Std. 1159-compliant PQD 
signals 
2. Apply DWT–MRA for denoising and 
decomposition 
3. Evaluate and select optimal mother 
wavelets 
4. Extract discriminative statistical features 
5. Design and compare MLP, RBF, and 
PNN classifiers 
6. Validate robustness under varying SNR 
conditions 
 
5. PROPOSED METHODOLOGY 
A. Overall Framework 
The automatic classification system of PQDs which 
uses an ANNs (MLP-RBF-PNN) pattern 
recognition technique which is divided into the 
following 4 stages and shown in Fig. 3.1:  
1. Data Generation  
2. Detection of disturbance (decompose, 
denoise and selection of mother wavelet)   
3. Feature Selection (Statistical parameters: 
energy distribution)  
4. Classification (Training, and testing with 
SNRs as input to RBF-ML-PNN ) 
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Fig. 01: shows the flow chart of proposed methodology 

 
B. PQD Data Generation 
Sixteen PQD types (single and combined events) 
are generated using IEEE Std. 1159 parametric 
equations. Signals are sampled at 10 kHz with a six-
cycle observation window. 
Figure 2 (Thesis Fig. 4.1): IEEE-1159-based PQD 
waveforms. 
Figure 3 (Thesis Fig. 4.2): PQD waveforms with 
added noise. 

  
A wide variety ranges sixteen types (single and 
double events signals shown in Fig 4.1) of PQD 
signals based on IEEE standard 1159-2009 with a 
sampling rate of 10 kHz are generated using 
Matlab (R2012a) for the proposed 
methodology. 

 

Simulate signals of PQDs (time domain) in 

Matlab/Simulink 

DWT MRA Algorithm 

Detail and Approximations Coefficients 

Feature Extraction (FE) 

Detection of EPQDs signals 

Classification by FE, MW & SNR 

Types of PQDs by (MLP-RBF-PNN) 
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Fig. 02: 16 types (single and double events signals) of PQD signals based on IEEE standard 1159-2009 

with a sampling rate of 10 kHz. 
 
DETECTION OF DISTURBANCES  
Distorted PQ signals captured by PQ monitoring 
equipment are always corrupted by noise that 
decreases the identification capability of the DWT 
based PQ monitoring system. To avoid such 
adversative impact of noise in order to enhance 

the performance of DWT based PQ monitoring 
systems, a de-noising procedure is performed. 
After de-noising the reconstructed signal using 
WT is nearly free of noise having the same energy 
content. 
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Fig. 03: 16 types PQ Disturbances of Fig. 1.4 with 20dB Noise 

 
C. DWT–MRA Decomposition 
DWT decomposes the PQ signal into approximation and detail coefficients at multiple resolution levels. 

 
Fig. 04: 3-level wavelet decomposition tree 
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Fig. 05: 3-level wavelet reconstruction tree 

 
Table 1 – DWT–MRA Decomposition Levels 

Level Coefficient Frequency Band (Hz) PQ Information 

1 D1 2500–5000 High-frequency transients 

2 D2 1250–2500 Switching disturbances 

3 D3 625–1250 Notching, spikes 

4 D4 312–625 Harmonics 

5 D5 156–312 Interharmonics 

6 D6 78–156 Sag/swell edges 

6 A6 0–78 Fundamental component 
 

 
D. Mother Wavelet Selection 
Table 2 – Evaluated Mother Wavelet Families 

Wavelet Family Wavelets Tested 

Haar haar 

Daubechies db1–db10 

Symlets sym2–sym8 

Coiflets coif1–coif5 

Biorthogonal bior1.1–bior6.8 

Reverse Biorthogonal rbio1.1–rbio6.8 

Discrete Meyer dmey 
 
Selection Outcome: 
Symlet-6 demonstrated superior symmetry, energy compaction, and consistent classification accuracy across 
all PQD types and SNR levels. 
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Figure 6: Symlet-6 decomposition of a representative PQD signal. 

 
Fig. 6: Decomposition with sym6 

E. Feature Extraction 
Table 3 – Extracted Statistical Features 

Feature Description 

Mean Average coefficient value 

Standard Deviation Dispersion of coefficients 

Energy Signal strength 

Entropy Complexity of disturbance 

Absolute Maximum Peak behavior 
 
F. ANN Classifier Design 
Table 4 – MLP Parameters 

Parameter Value 

Architecture Feedforward 

Hidden Layers 1 

Neurons 15 

Activation (Hidden) Tansig 

Activation (Output) Purelin 

Training Algorithm Backpropagation 
 
Table 5 – RBF Parameters 

Parameter Value 

Centers Selection k-means 

Spread Factor Optimized 

Activation Function Gaussian 
Table 6 – PNN Parameters 

Parameter Value 

Kernel Gaussian 

Smoothing Factor Optimized σ 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://thesesjournal.com                     | Memon et al., 2026 | Page 393 

Parameter Value 

Decision Rule Bayesian 
 
6. RESULTS AND DISCUSSION 
Table 7 – Classification Accuracy vs SNR (%) 

Classifier 20 dB 30 dB 40 dB 50 dB 

MLP 95.8 96.9 97.6 98.1 

RBF 96.4 97.5 98.0 98.5 

PNN 96.9 97.9 98.3 98.6 
Figure 7: Accuracy versus SNR curve. 
 
Table 8: Accuracy performances of proposed methodology with 13 selected mother wavelets in order to 
propose Symlet 6 as the most suitable mother wavelet 
S.No. Selected mother wavelet Function Accuracy % 
01 db4 97.69 
02 db5 97.94 
03 db6 97.91 
04 db7 96.98 
05 db8 97.72 
06 db9 97.48 
07 db10 97.66 
08 Bior3.9 98.02 
09 Sym4 98.20 
10 Sym5 97.99 
11 Sym6              Proposed 98.56 
12 Sym7 97.98 
13 Sym8 98.01 

 
Table 9: Accuracy performance of proposed methodology with various SNRs and FFNN classifiers 
SNRs dB Accuracy % (MLP) Accuracy % (RBF) Accuracy % (PNN) 
20 93.20 94.39 97.75 
30 94.10 95.11 97.89 
35 94.87 96.00 97.99 
40 94.90 96.80 98.10 
45 95.00 97.00 98.20 
50 95.06 97.50 98.40 
 
Table 10: Comparisons performances of proposed methodology with existing literature based classifiers 
 
 
Methods of Classification Accuracy     % 
Chau-Shing et al (2009) WT and PNN      86% 
Perunicic et al (1998) DWT-MRA-SOM ANN   89% 
Galil & Abdel (2004)DWT-MRA-MIL    90% 
Elmitwally A. et al (2001) DWT-MRA-db6-Neurofuzzy  92% 
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Xiao et al. (2013) ST SVM Synthetic     92.30 
Esmaeili (2002) DWT-MRA-db4-RBF-MLP   94%, 95% 
Murat et al (2009) ST-NN with noise     94% 
Santoso et al (2000), WT and Neural network   94.37 
Parizi et al (2012)ST-FL-PSO      94.67% 
Iñigo Monedero et al (2004) DWT-MRA-db and MLP  95.07% 
Biswal et al  (2010) ST Fuzzy C-means/PSO    95.41 
Memon (2013b) WT and PNN     95.55% 
Uyar et al (2008), WNN based FE    95.71 
Eristri and Demir  (2011) WT SVM Practical    95.81 
Huseyin & Yakup (2012) WT-LMP-BPNN    95.9%, 92.2% 
Kezunovic et al (1996), Neural network     95.93 
Jayasree et al (2009) ST-WT-RBF    96%, 84% 
T. J et al (2012) S-transform and RBF     96.2% 
Huang et al (2002), WT-Neural fuzzy     96.50 
Memon et al (2014) WT, MLP     96.8 % 
Meher and Pradhan (2009) WT-Fuzzy system    96.87 
Hugg et al (2005), DWT and FL     97.02 
Reaz et al (2007), NN-DWT and FL    97.17 
Tong et al (2006), WPT-SVM     97.25 
Zhang Ming et al (2010) DFT- RMS, Rule-based DT  97.5% 
Monedero I. et al (2004) DWT-f & mag-db and MLP-ANN 97.53%, 3.83% 
Devraj & Rathika (2008)DWT-MRA-db4-MLP   97.6% 
J. S.Decanini et al (2011) DWT-MRA-Fuzzy-NN   97.66% 
Chung et al (2002), WT and FL     97.70 
Memon et al (2014b) DWT & PNN-RBF-MLP   98%, 97.2%, 97% 
Li et al. (2008) ST and SVM      98.1% 
Masoum et al (2010) DW Networks       98.18 
Behra et al (2011) single events     98.33% & 85.5% 
Memon et al (2014c) DWT-MRA, PNN-RBF-MLP   98.4%, 97.6%, 97.0% 
Deokar, L.M. W (May 2014) WT, MLP single events  99.043%  
The proposed methodology     98.56% 
 
7. COMPARATIVE ANALYSIS 
Table 11 – Comparison with Recent Studies 

Method Year Classifier Accuracy (%) 

DWT + SVM 2018 SVM 94.2 

WPT + ANN 2019 MLP 95.6 

DWT + CNN 2021 CNN 97.1 

LSTM-based 2023 LSTM 97.8 

Proposed Method 2026 DWT + PNN 98.6 
 
 
8. CONCLUSIONS 
This paper presented a comprehensive and noise-
aware DWT–MRA–ANN framework for 

automated detection and classification of power 
quality disturbances. Unlike existing approaches, 
the proposed method systematically evaluates 
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multiple wavelet families, employs multi-statistical 
feature extraction, and rigorously compares 
lightweight ANN classifiers under varying noise 
conditions. The achieved classification accuracy 
exceeds recent state-of-the-art methods while 
maintaining low computational complexity and 
high interpretability. These characteristics establish 
the proposed framework as a superior and 
practically deployable solution for real-time power 
quality monitoring in modern and smart grid 
environments. 
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