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Abstract

The current development of manufacturing technologies and the ongoing necessity
to build sustainable and human-focused production systems are posing a serious
threat to the conventional automated manufacturing systems. The Industry 5.0
vision that entails billions of intelligent devices cooperating with human laborers
in intelligent manufacturing network must resolve the issue of human-machine
synergy and leverage the new technologies of artificial intelligence, machine
learning, and cyber-physical systems. Human-centricity is a challenge that has
limited human-centricity in the current continuum of Industry 4.0 applications,
which drives us to consider human-obot collaboration (HRC) as the solution to
the nextgeneration manufacturing. Industry 5.0 allows pigmenting human
capabilities through intelligent robotic systems without compromising the human
creativity, flexibility, and ability to make decisions. This paper aims to discuss
Industry 5.0 as a paradigm shift in the development of human-centric smart
manufacturing and open the way to intelligent production systems of the future to
struggle against the sustainability, resilience, and well-being of the working
community. We initially point out the transformation of Industry 4.0 into
Industry 5.0 and the overall change in manufacturing towards being human
centered. Then we explore HRC as an effective intervention to improve the safety
and productivity at work place. Next, we discuss the smart manufacturing
architecture such as 1loT, cyber-physical systems, and digit twin applications, to
exploit the interconnected digital technologies. To learn about data processing and
system optimization, we illustrate predictive maintenance and quality control as
well as data-based optimization schemes of production that use AI/ML. In
addition, we also explain industrial communication standards (OPC UA,
MQTT), programming environments (Python, R, MATLAB, Node-RED), and
sensor integration methods towards the implementation of Industry 5.0 systems. In
a similar manner, to meet the workforce development demands, sufficient extended
reality (XR) training solutions and human-machine interface designs are discussed,
as well as the aspects of sustainability and the integration of the circular economy.
Lastly, we point out the Industry 5.0 applications with current research issues and
future perspectives of the next-generation smart manufacturing systems.
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INTRODUCTION

Based on the industry estimates, the market of smart
manufacturing will continue to grow to $384.8
billion by 2025, as more manufacturers advance Al,
IoT, and robotics solutions in a bid to improve the
efficiency of their operations [1]. Equally, 78 percent
of manufacturers, according to Deloitte 2025 Smart
Manufacturing and Operations Survey, have adopted
or are planning to adopt Al-driven automation
technologies [2]. This massive implementation of
smart technologies in the production process, the
accentuation on human-robot cooperation systems,
and the combination of IloT with smart-physical
systems enables manufacturing processes to be
attached to ubiquitous digital networks [3].
Nevertheless, the issue of traditional Industry 4.0
implementations is the smaller emphasis on the
human-centricity and well-being of the workers.
Therefore, numerous effective automated
manufacturing systems do not utilize human
creativity, adaptability, and decision-making in full
[4].

In recent years, the sphere of manufacturing has
achieved a lot in terms of technology, such as
integration of artificial intelligence and machine
learning to predict analytics, connection of smart
equipment in IloT networks, the use of cyber-
physical systems to monitor in real-time, and better
methods of collaboration between humans and

robots [5]. Such technological progress is slowly
taking us to one of the most revolutionary stages of
production- the next generation of human-centric
smart manufacturing Industry 5.0 that will add value
to human ability without removing the advantages of
automation in the new intelligent production models

6l, [7].

1.1. Limited Human-Centricity: A Challenge
Conventional Industry 4.0 deployments are mainly
centered on automation effectiveness and cost-
reduction, commonly considering human employees
as parts, which could be substituted instead of
empowering them [8]. Until the recent past, the
manufacturing systems were more concerned with
the technological development without fully taking
into account the state of the workers, job
satisfaction, and the human qualities of creativity
and adaptability which are not easily replaceable [9].
Figure 1 shows the evolution from Mechanization to
Humanization. Today Industry 5.0 is focused on
human-centered solutions that view workers as key
sources of innovation and the ability to solve issues.
This paradigm shift promotes sustainable production
as well as improving workforce participation. In
addition to the efforts to maximize the automation,
there are a number of suggestions targeting the
human-centricity issues in manufacturing[9], [10].

[Evolution of Industrial Revolutions: From Mechanization to Humanization]
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Figure 1: Evolution of industrial Revolutions from Industry 1.0 te Industry 5.0
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These proposals include:

° Human-robot  cooperation  systems to
combine human creativity and robot accuracy with
concerns on workplace safety and ergonomics[11];

° Adoption of Al/ ML technologies to
support the workings of human decision-making,
instead of overtaking human workers[12];

° Virtual work experiences to improve
employee competencies and minimize accidents in
the workplace [13], [14];

° Optimization production plans that are
based on data can enable employees with practical
knowledge and still maintain human autonomy[15],
[16].

Such  human-focused solutions improve the
interactions and satisfaction of employees without
losing the advantages of automation[16], [17].
Nevertheless, the realization of a human-machine
synergy is one of the basic challenges that presuppose
a wide-scale connection of various technologies[18].
So, what would be the answer to this enduring
predicament? This is the issue that encourages us to
investigate Industry 5.0 concepts.

1.2. Towards Human-Centric Smart Manufacturing
What would happen to the manufacturing systems
should they be able to incorporate human
intelligence and efficiency with machine efficiency
seamlessly? Human creativity and adaptability would
not be lost since we are reaping the gains of
automation[19], [20]. The vision would enable
manufacturers to prevent the adverse effects of too
much automation such as losing employees to jobs
that are being automated, lack of innovation and job
satisfaction[21], 22].  Industry 5.0  Smart
manufacturing systems would enable human workers
to have smart tools. The concept of human-centric
manufacturing allows employees to add value to the
work and have the support of sophisticated
technologies. Industry 5.0 has positive aspects as
outlined below:

° Robot  accuracy can be used in
manufacturing processes as well as human ingenuity.
° Employees enjoy increased job satisfaction
and significant involvement.

° The production systems are in a better
position of sustainability and resilience.

These characteristics would transform the existing
idea of automating the manufacturing process.
Besides, such features would allow genuinely
intelligent production systems that would take
sustainability concerns into account and respect
human dignity. The manufacturing plants would be
very efficient and at the same time keep both the
workers as well as the environment[23]. The most
recent studies by the European Commission have
presented the Industry 5.0 paradigm, which focuses
on human-centricity, sustainability, and resilience as
the complementary policies to the efficiency-centered
approach of Industry 4.0[24]. This model gives a
good guideline to the manufacturers that are moving
towards Industry 5.0 implementations.

1.3. Human-Robot Collaboration: A Solution to
Limited Human-Centricity

Conventional industrial robots are used in secluded
cells where they are not in contact with the human
workers to avoid  accidents.  Human-robot
collaboration (HRC) is a form of robotics, unlike
traditional industrial robotics, which enables human
and robot to establish their mutual workspaces,
enabling the two parties to utilize their
complementary abilities[25], [26]. Nevertheless, HRC
discusses the benefit of collaborative robots (cobots)
that will have enhanced safety (e.g., force limiting,
collision detection, adaptive control), and in this way
will  transform  manufacturing  processes[27].
Nowadays, the development of HRC systems with
the improvement of productivity, as well as safety, is
of great interest among the researchers who want to
overcome the human-centricity issues in smart
manufacturing[27].

The benefits of Industry 5.0 are Al-based robotic
systems that can learn by watching people, as well as
adaptive control algorithms with multi-modal sensing
capabilities|28]. Cobots can learn by responding to
human intentions with these technologies and
changing their behavior. Therefore, we examine
HRC systems that facilitate human-centric
production in the new smart production settings[27],
[29]. The current literature has provided
comprehensive reviews of the most recent advances
in collaborative robotics and safety standards of the
HRC applications.

https://thesesjournal.com

| Memon et al., 2025 |

Page 1891


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 10, 2025

Our survey adds to these works by considering HRC
through the lens of Industry 5.0 as an approach that
incorporates human-centricity with new
technologies, such as AI/ML, IoT, cyber-physical
systems, and extended reality. Moreover, our
direction closes the gap between past studies of
Industry 4.0 orientation and current trends in
Industry 5.0 in that we include integrated smart
manufacturing ecosystems that prioritize human
work and take advantage of advanced automation.
This paper will attempt to provide a comprehensive
survey on Industry 5.0 as a new paradigm towards
attaining human-centric smart manufacturing in next
generation production systems. To be specific, the
following points are addressed in this paper:

° We talk about Industry 4.0 to Industry 5.0
and introduce HRC as the one of the possible
solutions to human-centric manufacturing.

° Our offerings are intelligent manufacturing
systems such as IloT architecture, cyber-physical
systems, and Industry 5.0 implementation of digital
twins.

° We show AI/ML solutions such as
predictive maintenance, quality control and data-
driven production optimization schemes.

° We emphasize the industrial communication
standards, programming platforms, and sensor
integration methods to apply the Industry 5.0
systems.

° We  demonstrate  workforce  training
applications,  future approaches to research
publication, and sustainability issues and work
directions.

The remainder of the article will be structured in the
following way. Part 2 is dedicated to the Industry 5.0

paradigm shift of technology-driven to human-centric
manufacturing. Section 3 addresses human-robot
collaboration systems and safety issues. Section 4
discusses intelligent manufacturing technologies such
as [IoT, communication protocols and cyber-physical
systems. In Section 5, Al/ML uses in predictive
maintenance, quality control, and optimization of
production are described. Section 6 thinks about the
programming tools and sensor integration with
Industry 5.0 implementation. Section 7 represents
examples of extended reality technologies to develop
the workforce. Section 8 refers to the future trends,
sustainability and outlook. Lastly, there is a
conclusion to the article in Section 9.

2. The Industry 5.0 Paradigm: From Technology-
Driven to Human-Centric Manufacturing

The shift, which occurred between the Industry 4.0
and Industry 5.0, is not just an incremental
advancement in technology, but it is a complete re-
imagination of how humans and the manufacturing
technologies relate to one another[4], [7]. The
concept of Industry 5.0 was a result of the realization
of the shortcomings of the fully automation-oriented
strategy and invaluable role of human imagination,
flexibility, and moral judgment in the manufacturing

environment[7], [12].

2.1. Defining Industry 5.0

European Commission officially introduced the
Industry 5.0 concept, which is seen as a continuation
of Industry 4.0, making research and innovation its
drivers towards a sustainable, human-centered, and
resilient European industry[30], [31]. Within this

definition, three pillars form its basics as shown in
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Figure 2:

Industry 5.0: Three Foundational Pillars for Next-Generation Manufacturing

Industry 5.0: Three-Pillar Architecture
{3D Perspective)

Aluman-Centricity

Sustainability

Industry 5.0 Fr; : Detailed View

juman-
Centrisity

sustainability Resilience

Inauistry 5.0 complemants Industry 4.0 by placing researcts and innovation as drivers
for a sustainable, human-centric. and resilient industry. ft batances efficiency with
worker well-being. environmental responsibility, and operational agaptability.

Figure 2: Industry 5.0 Three-Pillar Architecture with Detailed Framework Components

Human-centricity: The manufacturing systems shall
be geared to meet the needs of the workers, as well as
consider the basic rights of humanity, autonomy,
and privacy in the workplace, in addition to
establishing inclusive workplaces. This pillar will
make sure that the implementation of technologies
can boost the human capabilities and job satisfaction
but not reduce them.

Sustainability: The production processes are
environmentally friendly by considering the concept
of the circular economy, efficient use of resources,
and the use of renewable energy. Industry 5.0
acknowledges planetary boundaries as restriction
limits within which manufacturing has to operate.
Resilience: The manufacturing systems are resilient
to disruptive attacks by having flexible technologies,
diversified supply chain, and strong cyber-physical

Table 1: Complete Evolution from Industry 1.0 to 5.0

infrastructures. Strong structures adapt well to the
market variations, supply chain disruptions, and
unforeseen difficulties.

2.2. Evolution from Industry 4.0

Table 1 Shows the complete evolution. The initial
industrial revolution entailed the mechanical
production with the aid of water and steam . Mass
production became a reality in the second revolution
with the help of electrical energy and assembly lines.
The third revolution allowed automated production
by the means of electronics and information
technology. The fourth revolution involved the
introduction of the cyber-physical systems and self-
directed functioning with availability of interrelated
smart technologies[32].

Industrial Era Key Technologies Focus 'Worker Role

Revolution

Industry 1.0 1760s- 'Water/steam power Mechanization Labor replacement]
1840s

Industry 2.0 1870s- Electrical power, assembly lines Mass production Mass labor
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1970s
[ndustry 3.0 1970s- Electronics, IT, computers Automation System

2010s monitoring
Industry 4.0 2010s- [oT, Al, cyber-physical systems IAutonomous operations |Limited

present involvement
[ndustry 5.0 2020s- Human-Al  synergy, resilience,Human-machine |Active partnership

future sustainability collaboration

Industry 5.0 takes the Industry 4.0 as the basis and
tackles the urgent gaps. Where Industry 4.0 focused
on the ability to substitute human labor with
automation, Industry 5.0 focuses on expanding
human abilities by  using  collaborative
technologies[6], [30], [33]. Where Industry 4.0
focused on efficiency and productivity, Industry 5.0
strikes a balance between the two and sustainability
and human well-being of the workers. Industry 4.0
focused on creating autonomous systems, whereas
Industry 5.0 focuses on developing symbiotic human-
machine relationships, which use complementary

advantages[30].

2.3. Human-Centric Manufacturing Principles
Human centric production appreciates that human
beings possess special attributes to production setups
which cannot be imitated by machines. The power of
creativity allows innovation and finding solutions to
new circumstances[20], [21]. It would enable proper
cooperation and leadership. Flexibility enables quick
reaction to the changing conditions. Moral judgment
determines the responsible decisions that are in
accordance with the values of society.

The manufacturing systems that are built in line with
the Industry 5.0 principles make technology an
empowerment of human potential instead of
displacing human workers[4]. There is collaboration
between robots and humans where the former
perform the physically demanding, repetitive or
hazardous work but the latter are involved in solving
problems creatively, making quality judgments and
initiating constant improvement projects [12]. Al
systems can be used to support decision-making by
studying massive amounts of data and detecting
patterns in this data, whereas humans apply their
insights to the larger context and decide taking into
account ethical consequences[34].

2.4. Discussion

This part is a summary of the Industry 5.0 paradigm
and how it differs with the past industrial paradigms.
The significant contributions are as follows:

1. In its definition, the European Commission
sets three cornerstone pillars, namely human-
centricity, sustainability, and resilience, as additional
objectives to the efficiency of Industry 4.0. Such a
framework gives a  definite roadmap to
manufacturers who move towards Industry 5.0
implementations by making the articulation that the
success of technology depends on striking a balance
between human needs and its efficiency in
operations[4].

2. The 5.0 industry supports the most severe
shortcomings of totally automation-oriented
strategies, such as acknowledging the invaluable role
of human creativity, flexibility, and moral judgment.
This realization makes manufacturing philosophy
more of human ability enhancement than the
replacement of human labor, thus workforce
engagement and not displacement[21].

3. Human-centric manufacturing values make
technology an enabler and not a substitute to allow
the system to be able to take advantage of the
complementary human and machine strengths. This
can be used to increase productivity and worker
satisfaction by developing meaningful work
environments where technology helps to supplement
human contribution, as opposed to reducing it.J21]

4. The shift to Industry 5.0 calls manufacturers
to rethink the approaches to the application of
technologies so that the new systems would create
more opportunities to humans without violating
their basic rights and encouraging sustainable use.
The strategic change impacts the system design,
training of workers and the organizational

culture[35].
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3. Human-Robot Collaboration: An Effective
Solution

Human-robot collaboration is the technology that is
the foundation of the human-focused vision of
Industry 5.0[4], [36]. HRC systems enable human
beings to collaborate with robots on the same
working areas and integrate human thinking with

robot accuracy and consistency[27]. This chapter
examines HRC  systems, safety standards,
communication strategies, and Al integration to
work together in the manufacturing. Figure 3 shows
the Human-Robot Collaboration: System
Architecture and Safety Standards.

Human-Robot Collaboration: System Architecture and Safety Standards

Human-Robot Collaboration System Architecture

Human Collaborative
Worker Robot (Cobot)

'

735 T Ep AT

Forca Uriting = collel

Four Collaborative Operation Modes (ISO 10218:2025)

3, Speed & Separation
Monitoring

4, Power & Force
Limiting

HRC Benefits

B, T € e Ty © e e

Figure 3: Human-Robot Collaboraticn System with Safety Mechanisms and Coflaorative Operation Modes

3.1. Understanding HRC Systems

Conventional industrial robots work within safety
fences since they are very fast, have a big capacity and
may be dangerous to other humans near the
robots[37]. Cobots (also known as collaborative
robots) are specifically developed to operate safely
together with human workers using a variety of safety
features[38]. Force limiting ensures that the cobot is
not able to act with a high amount of force which
can hurt someone in case of unplanned contact[38],
[39]. The sensors are used in collision detection that
instantly halts the movement of the robot in case of
human presence. The adaptive control algorithms
vary the speed or path of the robot depending on the
distance between the robot and the human[40].

The International Federation of Robotics estimated
that collaborative robotics was going to expand
substantially, with the industry shipment amount
projected to be much higher as safety and flexibility
advantages are acknowledged by manufacturers[41],
[42]. The current generation of cobots is much
lighter than the old industrial robots and can be
reprogrammed easily to perform new functions, as

well as being much more affordable to use and
maintain[42], [43].

What are the ways of safe co-operation of
manufacturing operators with high-speed robots! The
solution is in joint-design of robots that restricts
forces and velocities by making innovative
mechanical and control systems. Sophisticated
sensory arrays can sense the presence of people and
surrounding activities which can be used to alter the

behavior of the robots in real time[12], [44].

3.2. Safety Standards and Guidelines

The most important issue of HRC implementations
is safety. Numerous international standards offer
integrated guidelines on safe coexistence of humans
and robots. The ISO 10218:2025 standard (which
incorporates the previous ISO/TS 15066 to
collaboratively operate robots) sets safety standards
concerning the industrial robot systems and
collaborative robots (in applications)[45], [46].
ANSI/RIA R15.06 in the United States are

complementary safety standards, which cover the
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safetyrated monitoring, collaborative workspace
design, and risk assessment[26].

These standards present four ways of collaborative
operations:

Stop with safety rating: When a human being enters
the collaborative work place, the robot will
automatically stop and will resume their work when
the human leaves[47].

Hand guiding: A human operator also controls the
robot end-effector using his hand, and the robot
assists with providing power to the heavy parts[39],
[48].

Speed monitoring and separation monitoring: The
robot decreases speed when human are near and
halts in case minimum separation distances are not
met[46], [48].

Restraints of power and force: Naturally designed
safe robot designs restrict power to levels that cannot
harm the contacting parties even at the point of
contact[39], [49].

Studies have shown that well installed HRC systems
can minimize the injuries at the workplace by up to
72 percent in comparison with the conventional
manufacturing  surroundings[37], [50]. These
advantages of safety can be attributed to the fact that
cobots take on physically challenging and hazardous
jobs and put repetitive strain injuries in the
background as well as cut down human error in case

of fatigue[41], [51].

3.3. Communication in HRC

Successful interaction between human beings and
robots needs to be intuitive. The conventional
industrial robots need specific programming skills,
which puts a barrier between workers and robots[52],
[53]. Contemporary HRC systems make use of
various modalities of communication to enable
natural human-robot interaction[54].

Verbal Communication: Voice commands enable
the workers to command robots in natural language.
The speech recognition systems comprehend and
convert the commands to the actions of the robot.
Voice feedback gives state and intention reports on
the robot and alerts[55], [56].

Non-verbal Communication: This is through
gestures that allow control of the robot intuitively
without having to touch it. Computer vision systems
are able to identify the hand signals and body

movements to detect human intentions. Visual cues
such as display screens and lights communicate the
aspect of robot position to the nearby employees[57],
[58].

Haptic Communication: Force feedback: The force
feedback gives feedback on the hand-guiding
operations. Robots can respond to physical contact
by using touch sensors that identify touch. Vibration
patterns or change of pressure can be used to
communicate information using tactile displays[59],
[60].

The most up-dated research findings have pointed
out communication, both verbal and non-verbal, as
one of the factors that contributed to effective HRC
implementations. Non-verbal cues can play a
significant role in updating the robot status in the
collaborative work and improve understanding and
coordination between the human employees and

cobots[29].

3.4. Al Integration in HRC

Current developments in HRC deployments have
been more and more focused on the use of artificial
intelligence to allow the adaptive operation of robot
and learning by human example. Cobots can visually
learn responses to human tasks through machine
learning algorithms, which acquire ideal motion
patterns, grasping methods, and assembly steps after
observing human tasks[43], [61]. Reinforcement
learning allows robots to become more efficient due
to the trial and error interaction with the
environments with the supervision of humans[62].
HRC systems based on Al can also be used to assign
tasks dynamically, automatically distributing tasks to
people and robots according to task demands,
human workload, and robot capacity[27], [63]. Deep
learning and computer vision help robots perceive
complicated scenes and identify objects in a noisy
environment, as well as design grasping strategies
that suit various constituents[64], [65].

This idea goes beyond physical cooperation to
human-Al synergy, merging human mental faculties
such as creativity, situational insight, and moral
judgment with Al computational capabilities such as
fast information processing, pattern identification
and optimization[66]. Such synergy enhances the
quality of decision making, operations and
innovation level in manufacturing settings.
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3.5. Discussion

Table 2 summarizes human-robot collaboration technologies and their applications in Industry 5.0
manufacturing. The main contributions are as follows:

# HRCMechanism Key Benefits Standards
Technology
1 Force limiting Prevents injury through inherent mechanical design [ISO 10218:2025
2 Collision detection  |Realtime monitoring and response to human/ANSI/RIA
proximity R15.06
3 Adaptive control Dynamic speed and trajectory adjustment [SO/TS 15066
4 Verbal communication[Natural language interaction for task specification ~ [ISO 13849-1
5 Gesture recognition  [Non-verbal control and status communication [SO 102182
6 Machine learning Learning from human demonstrations for task[ISO 10218-1
adaptation
7 Reinforcement Performance improvement through human feedback |ANSI/RIA
learning R15.06
3 Dynamic task|Al-based distribution of work between humans and|ISO 13849-1
allocation robots
Key conclusions include: ° The ISO 10218:2025 (ANSI/RIA R15.06) is
an international standard of safety that offers a
° The collaborative robots have various safety detailed set of guidelines that identify four modes of

features such as force limiting, collision sensors and
adaptive control to facilitate safe working conditions
with human workers without the use of safety nets.
This is a technological innovation that allows flexible
manufacturing arrangements, human-robot
collaboration in varied assembly operations.

collaboration and safety requirements. Adherence to
such standards will make HRC implementations
secure the safety of the workers and full productivity
benefit by means of standardized risk assessment and
risk management[37].

Multi-Modal Communication in Human-Robot Collaboration

Verbal Communication
o
cam
uman
jorker

‘

Multi-Modal Communication in HRC | |

Tactile Displays

Integration Benefits
0 |
*
d
4

Figure 4: HRC Cammunication Modalities - Verbal, Non-Verbal, and Haptic interaction Methods
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° Multi-modal  communication, such as ° The studies show that effectively deployed
through verbal commands, gesture recognition and HRC systems can lessen injuries at the workplace by
haptic feedback, allows human-  robot as much as 72 percent and enhance productivity by

communication to be intuitive without the need to
have specific knowledge of programming skills.
Figure 4 shows the multi model communication in
Human-Robot Collaboration. Natural
communication interfaces decrease training and
increase the acceptance of collaborative robotics to
workers in manufacturing facilities[67].

° Due to Al integration, cobots can learn
human demonstrations, change behaviors according
to the environmental factors, and make decisions in
the dynamic allocation of tasks. These intelligent
features contribute to the flexibility of the HRC
systems, as well as the possibility of continuing the
improvement of collaborative activities because of

the continuous learning[29], [53].

distributing human and robot tasks optimally. These
two advantages of increased safety and effectiveness
confirm the humanistic nature of Industry 5.0 to
transform the manufacturing process[33], [68].

4. Smart Manufacturing Technologies

Smart manufacturing is the technological basis that
allows Industry 5.0 to operate via connected digital
systems that allow real-time monitoring, data-driven
decision-making and adaptive production[30], [69].
IIoT architectures, communication protocols, cyber-
physical systems, digital twins, and extended reality
applications are discussed in this section[68], [70].
Figure 5 shows the IloT Architecture for Smart
Manufacturing.

jnéustrial Internet of Things (lloT) Architecture for Smart Manufacturing

[E oo oo o)

Cloud & Enterprise Layer

Edge Computing Layer

Network & Communication

Sensor & Actuator Layer

Physical Manufacturing Lays

WILFI / Ethernet

Production Lines Equipment

Market Growth: Al in 16T projected to grow 27% annually through 2026

56 enabies

cantral,

Figure 5: industrial intemet of Things (loT} Architecture - Layered Approach for Smart Manufacturing

4.1. Industrial Internet of Things

The Industrial Internet of Things is the nervous
system of the modern smart factories, which links
machines, sensors, actuators, and devices into
elaborate networks that allow data gathering, data
analysis, and control[71]. The IloTs are systems that
incorporate conventional manufacturing devices to
include smart sensors, wireless communication units,

and edge computing units to form intelligent and
responsive production systems[72].

The world Al in IoT market shows speedy growth
and it is expected to grow at 27 percent/year till
2026 as manufacturers are becoming more aware of
the benefits of the IloT [73]. Efficient connectivity
devices, especially 5G networks, revolutionize IloT
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features by offering up to about 1 gigabyte per
second download rates and negligible latency[74],
[75]. This improves bandwidth to allow huge data
flows needed to monitor, control and optimize
complex manufacturing processes in real time.

The application of IIoT allows a number of essential
functions:

1. Real time equipment monitoring monitors
the operational parameters such as temperature,
vibration, pressure and energy consumption[76].

2. Predictive maintenance uses sensor data to
predict possible failures in equipment prior to them

happening[77], [78].

3. Vision sensors and measurement gadgets
allow quality control systems to detect defects during

production[79], [80].

4, Energy management tracks the consumption
patterns and manages them in the most efficient way
possible in order to save on costs and impact on the

environment[81], [82].

5. Supply chain visibility is a monitoring tool
that monitors materials, parts, and completed goods
along the manufacturing and distribution chains[83],

[841.

4.2. Industrial Communication Protocols

Modern industrial systems need a standard
communication protocol that will guarantee
communication interoperability among various
equipment of different vendors. There are two
protocols  that  prevail in  Industry 5.0
implementations: OPC UA (Open Platform
Communications Unified Architecture) and MQTT
(Message Queuing Telemetry Transport[85], [86]).
OPC UA is a complete framework that is a secure
and platform-independent
communication. The protocol is compatible with
hierarchical data model of complicated machine
structures, process parameters and production
information[87]. Inbuilt security systems comprise
encryption, authentication, authorization and audit
logging to counter the cyber threats. OPC UA also
allows  both  clientserver  designs  around
conventional request-response designs and publish-
subscribe designs to provide an efficient event-driven
communication design[88].

industrial

MQTT is a simple publish/subscribe protocol that is
optimized to run on a small device with a low-quality
network[89]. The low overhead of the protocol is
suitable to the devices in the IoT that have low
processing power and battery capacity. The quality-of-
service levels of MQTT provide delivery of messages
depending on its application needs of the best-effort
delivery as well as guaranteed exactly-once
delivery[90], [91].

More and more manufacturers are using hybrid
communication structures that combine the two
protocols. OPC UA is used to implement structured
industrial communication to secure factory
networks, and it offers machine-to-machine
interactions with semantic richness and security.
MQTT supports cloud-connectivity and off-secure-
network data-transmission, which allows analytics
platforms and remote-monitoring systems to access

the production data[91], [92], [93].

4.3. Cyber-Physical Systems

Cyber-physical systems are the combination of
computer algorithms with physical manufacturing
systems by means of embedded computers, sensors,
actuators, and networks[94]. CPS implementations
watch physical systems in real-time, process sensor
information with embedded algorithms and it
controls actuators by decisions computed, to form
closed-loop feedback systems[95].

In world, CPS market size stood at 118.20 billion in
2024 and it is expected to grow at 13.7 percent per
annum to 2030. This high rate of market expansion
indicates growing awareness in the benefits of CPS
such as high operational efficiency, quality products,
lessening downtime, and increasing resource
utilization[96], [97].

Figure 6 shows the cyber-physical systems: five layer
architecture for for Industry 5.0. CPS architectures
usually consist of two or more layers:

Physical layer: Production machinery, sensors, and
actuators.

Network layer: Physical infrastructure that links
physical components.

Computing layer: Data processing devices and
cloud-based computing.

Application layer: Software systems which offer
monitoring, control and optimization capabilities.
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Business layer: Enterprise system is a system that
links  business processes to  manufacturing

operations.

Cyber-Physical Systems: Five-Layer Architecture for Industry 5.0

Cyber-Physical System
5-Layer Architecture (3D View)
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What are the ways of manufacturing systems to be
real-time responsive and yet be secure and reliable?
The solution is the closely designed cyber-physical
systems where physical devices transfer data between
physical systems and computational layers and
decision systems in closely integrated feedback

loops[98].

with Physical

4.4. Digital Twin Technology

Digital twin technology is an almost real-time and
historical-based method of creating virtual versions
of a physical object, system or full factory that
resembles its real-life equivalent. Digital twins permit
manufacturers to track the equipment performance,
simulate the working conditions, optimize the
processes, and predict the future activities without
interference with the real production[99], [100].
Figure 7 shows the Digital Twin Frame work for
Industry 5.0.

Digital Twin Framework for Industry 5.0
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The segment that exhibits the best growth rate in
CPS markets is the digital twin one because the
capabilities are revolutionizing predictive analysis,
simulation, and optimization. Companies that use
digital twins have noticed high positive results such
as 20-50% reduction of equipment downtime, 10-
30% productivity increase, and 5-15% costs of
maintenance reduction[101], [102].

Applications of digital twins lie on a maturity scale:

° Descriptive twins: Visualize sensor-based
current asset state.

° Informative twins: Report on historical
performance and analytics.

° Predictive twins: Predict the future with
models of machine learning.

° Prescriptive twins: Advise the best actions by
prediction.

° Independent twins: Auto-implement

optimization decisions.

Digital twins can be used to provide augmented
reality and add strong visualization capacities. AR
headset-wearing observe
maintenance processes, equipment diagrams, and
real-time operational information superimposed on
the real machinery, increasing the level of
comprehension and decreasing the number of

mistakes in the maintenance processes[103], [104].

technicians can

4.5. Extended Reality for Manufacturing

Extended reality (XR) technology that includes
virtual reality (VR), augmented reality (AR), and
mixed reality (MR) technologies is changing the
manufacturing training, operations, and quality

control. The technologies strike upon important
issues in the development of the work forces,
especially a severe lack of skilled labor in the
manufacturing industry[105], [106].

VR will allow workers to learn how to work the
machinery, how to do maintenance, or how to react
to an emergency in fully simulated, risk-free virtual
conditions, and then apply these skills to real
equipment[107], [108]. Literature shows that workers
who received training through VR take up to 40
percent shorter time to accomplish tasks with
compared to traditional training methods, and
training through VR in a large group is up to 52
percent more affordable compared to traditional
training[109], [110].

AR applications are digital tools that superimpose
data onto the physical environment, offering real-
time visual instructions to an assembly process,
maintenance, and quality inspection procedure[111],
112].  Holographic  instructions, equipment
schematics, and operational procedures can be
provided to workers individually in their field of view
and hands free to allow them to get down to work.
This strategy accelerates the process of learning,
decreases the use of physical training resources, and
improves the effectiveness of knowledge retention
due to interactive and practical experiences[113],

114].

4.6. Discussion

Table 3 summarizes smart manufacturing
technologies and their roles in Industry 5.0
implementations. The main conclusions include:

# Function Market Size/Growth Key Advantages Integration
Technology
1 [loT Real-time data collection 27% CAGR to 2026 5G connectivity
2 OPC UA Semantic industrialIndustry standard Machine-to-machine
communication
3 MQTT Cloud connectivity Lightweight protocol Edge to cloud
4 Cyber-physical Integrated computing and|$118.2B in 2024 Multi-layer
systems control architecture
5 Digital twins Virtual representation 13.7% CAGR to 2030 Simulation and
prediction
6 VR training Risk-free skill development ~ [40% faster task completion {Immersive learning
7 AR guidance Real-time on-site assistance  [52% cost reduction vs|Point-ofneed
traditional information
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S Augmented Data-driven insights

analytics

Increasing adoption Al-powered analysis

Key conclusions include:

1. [IoT is the basic layer of connectivity that
allows real-time data retrieval of the manufacturing
equipment and 5G networks can offer bandwidth
and latency properties that ensure responsive control
systems[115], [116]. This infrastructural support is
what allows the high volumes of sensors needed to
monitor the entire production process in a complex

structure[117], [118].

2. OPC UA and MQTT are two
complementary communication protocols, as OPC
UA offers semantic richness and security to intra-
factory communications, whereas MQTT allows
developing an efficient cloud connection. Based on a
combination of both protocols, hybrid architectures
are able to maximise the capabilities of Industry 5.0
systems, whilst ensuring the security and scalability of

the network[92], [119], [120].

3. Cyber-physical systems combine the process
of computational intelligence with  physical
manufacturing by using embedded computing,
which produces a closed-loop system, continually
tracking and optimising processes. The projected
growth of CPS market at 13.7 percent indicates
growing usage in manufacturing industries[94], [97].

4, Digital twins allow virtualizing and
simulating real-world assets, assisting predictive
maintenance, process optimization, and the whatif
analysis, without interfering with production.
Organizations that use digital twins realize significant
gains in equipment maintenance (20-50 percent
downtime savings), productivity (10-30 percent
productivity gains) and maintenance efficiencies (5-

15 percent savings)[102], [121].

b. Extended reality technologies (VR and AR)
transform the training and on-site work processes as
they allow to create an immersive learning setting
and provide real-time instructions, respectively. The
proven advantages are 40 percent faster task
completion using VR training and 52-percent lower
cost of training than traditional training

methods[122], [123].

5. Artificial Intelligence and Machine Learning in
Smart Manufacturing

The implementation of Al and ML technologies is
transforming the manufacturing process through the
ability to predict analytics and optimize processes
and make decisions in real time[124], [125]. These
technologies enable manufacturers to predict the
availability of equipment to failure, plan production
time, minimal amounts of waste, and operational
efficiency.

5.1. Predictive =~ Maintenance and  Process
Optimization

Predictive maintenance systems loT-based predictive
maintenance systems introduce sensors that can
continuously detect the equipment parameters, like
vibration, temperature, pressure, and energy
consumptions[77]. This sensor data is processed
using advanced analytics and machine learning
algorithms to detect subtle changes and trends that
indicate some problematic occurrences and therefore
perform  proactive maintenance before any
breakdowns[79], [126]. This maintenance based on
data is a great advancement over the conventional
preventive  maintenance  schemes. = Whereas
preventive maintenance is operated according to a
fixed timetable irrespective of the actual equipment
state, predictive maintenance is operated according
to a timetable and undertakes repairs accordingly
depending on the real time equipment health data.
It has been shown that predictive maintenance with
the use of IoT can help save unplanned downtime by
huge percentages and maximize Overall Equipment
Effectiveness (OEE[127], [128]). During production
optimization, Al analyses large volumes of
manufacturing data to determine bottlenecks,
optimise the distribution of resources, and enhance
production planning. Data analytics will help
manufacturers to enhance productivity by an average
of 25 percent with improved workflows and
efficiency. Modern Al systems predict demand and
maintain inventory, optimizing inventory and
reacting to market trends in a better way than
conventional methods[73], [129], [130]. Figure 8
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shows the AI/ML predictive maintenance workflow

from data collection through to decision-making.

Al/ML Applications in Industry 5.0: Predictive Maintenance Pipeline

Three Key AI/ML Application Areas in Industry 5.0

Production Optimization

Overall Benefits of AI/ML in Industry 5.0

BB os0%ReductioninDowntime [ 20-40% Cost Savings

BB  Ennhonced Decisian-Making B imeroved saery Bl increased Procuctiviey

Figure 8: Al/ML icti i Pipeline and

5.2. Quality Control and Defect Detection

Deep learning has transformed the field of quality
control in production because of the previously
uninterested accuracy, speed and flexibility in
inspecting defects. The old-fashioned methods of
quality control based on the hand-written algorithm
is effective but limited in the sense of acquiring
knowledge and adjusting to new product defects and
variations. The Deep learning does not have these
limitations because it uses large volumes of data to
train the neural networks that can detect and
categorize defects with great accuracy[131], [132].
Research shows that the use of Al has resulted in
impressive progress in quality control effectiveness.
According to the research findings, deep learning
algorithms used in quality control may raise the
accuracy of defect detection to 90 percent. According
to the reports provided by leading tech firms,
manufacturers of deep learning algorithms are able
to save up to 80 percent of time spent in quality
control, which reflects in the economy of
considerable costs[133], [134]. Moreover, Al-based
quality control systems allow detecting and fixing
defects during the production process but not at the
end of the production lines which eliminates the
further development of defective products and

minimizes waste[135], [136].

ion Areas in industry 5.0 Manufacturing

Deep learning computer vision systems examine the
output of industrial cameras, scanning electron
microscopes (SEM), Xray equipment, and others in
order to identify flaws in the surface, dimensional
errors, and structural anomalies. These systems are
on-duty and ensure consistent accuracy, which

manual inspection [137], [138].

5.3. Data-Driven Production Systems

Data-driven manufacturing relies on the use of
operational and events data of the shop floor
equipment, operators and supply chains to make
decisions and optimise operations[139]. This will
allow manufacturers to have in-depth understanding
of production KPIs like cycle times, downtime, and
equipment  performance, and realize the
opportunities of improvement such as the
optimization of machine settings and the efficiency
of workflows[100], [140].

The  manufacturing  analytics  systems  are
manufactured with data incoming across various
sources such as databases (SQL, NoSQL), individual
file formats, and industrial IoT communication
devices (OPC) with manufacturing equipment.
Scalability is achieved in data storage and processing
through cloud interfaces to Amazon S3, Azure Data

Lake, and Google Cloud Storage[141], [142].
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Sophisticated analytical methods such as machine
learning, multiobjective modeling, and statistical
modeling are used on multiple-variate data to apply
advanced process control, process monitoring, drift
and defect prediction, root cause identification, and
manufacturing recipes optimization[143], [144].
Automated Classification and Regression Learner
apps based on AutoML technology are interactive
applications that can be used to generate optimized
machine learning models by automatically selecting,
selecting and tuning hyperparameters[145], [146].

Companies that use data-driven manufacturing
strategies indicate high levels of improvement in

5.4. Discussion

their operations. Studies show that the majority of
manufacturers who implemented data-driven
strategies (78%), said that operational efficiency had
improved, and the average productivity had
improved by 25%. The manufacturing industry
statistics indicate that manufacturing companies that
succeed in exploiting data analytics in their
manufacturing processes would be in a position to
increase production capacity by up to 20

percent|147], [148].

Table 4 summarizes AI/ML applications in manufacturing and their business impacts. The key contributions

are as follows:

# Al/ML{Technology Performance Key Metrics Industry Adoption

Application Improvement

1 Predictive Early failure detection |[Downtime reduction 65% of large]
maintenance manufacturers

2 Demand Inventory optimization [25% average productivity(Growing adoption
forecasting increase

3 Defect detection  [Deep learning vision_ . [90% accuracy 72% of quality teams

4 Quality inspection |CNN-based analysis = [80% time reduction ‘Widespread

5 Process Multiobjective 20% capacity increase Increasing
optimization optimization

6 Root cause analysis [ML pattern recognition |Faster problem resolution |[Emerging

7 IAnomaly detection [Statistical methods Early issue identification |Growing

3 Production Al optimization Reduced cycle times Advanced facilities

scheduling

Key conclusions include:

1. With the help of IoT sensors and machine
learning,  predictive  maintenance  can  be
implemented, which allows taking some actions in
advance before the equipment malfunctions,
minimizing any unwanted downtimes and
optimizing the usefulness of machines. This is a
radical change in terms of reactive to proactive

maintenance procedures[128], [149].

2. The quality control systems built with deep
learning can identify defects with an accuracy of 90%
with the inspection time reduced by 80 percent
relative to the manual system. In-line inspection
during the  manufacturing process  avoids
advancement of faulty products in the

manufacturing stages, and minimizes the expense of
rework and scrap at the manufacturing phase[150],
151].

3. Data-driven manufacturing makes use of
integrated analytics platforms based on the
combination of shop-floor data, enterprise systems
and cloud computing to detect optimization
opportunities. The observed 25 percent mean
productivity boost justifies the usefulness of data-
driven  decision making in  manufacturing

processes[139], [152].

4, The most recent machine learning methods
such as multiobjective optimization and AutoML
allow continuously improving by developing models
and tuning hyperparameters automatically. These
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capabilities make development effort less and
prediction accuracy and system adaptation a lot

better[153], [154].

5. Manufacturers that have effectively adopted
data-driven strategies also demonstrate and record
improvements in several performance dimensions
such as productivity (25% average), capacity growth
(20% potential), and an operational efficiency

growth (78% of adopters)[139].

6.
6.  Programming Tools and  Technical
Implementation

The effective adoption of Industry 5.0 systems will
demand an understanding of various programming
languages and development platforms depending on
various features of smart manufacturing[4], [30]. This
chapter discusses Python, R, MATLAB, Node-RED
and sensor integration methods towards Industry

5.0.

6.1. Python for Data Science and Al

Python is used very widely in machine learning,
artificial intelligence, and data engineering because
of its efficiency and a large number of libraries. The
language is superb when dealing with large volumes
of data and offers extensive structures of deep
learning, neural networks, and sophisticated
analytics[155], [156], [157]. The ability of Python to
integrate with industrial systems with libraries that
facilitate connection to OPC UA, MQTT among
other industrial protocols makes it useful in IloT
applications[158], [159].

The key benefits of Python in manufacturing include
wide machine learning packages (scikit-learn,
TensorFlow, PyTorch), good data manipulation
(Pandas, NumPy), issues with plenty of visualization
(Matplotlib, Plotly) and a large community with
widespread industrial automation examples[160],

161], [162].

6.2. R for Statistical Analysis

R is still a better fit to statistical analysis and
visualization, with its better abilities to process
tabular data and statistical modelling[163], [164].
The storage capacity of R has been found to be better
than that of Python Pandas at very specific data
scales due to the effective storage of data by R as
compared to Python, especially when complex

statistical calculations are required without involving
large exchanges in databases[165], [166], [167].

R has strong qualities of quality control analysis,
process capability studies, and statistical process
control (SPC) implementations in manufacturing
situations. The language offers sensitive visualization
tools to analyze the exploratory data and the full test
of statistics to validate the hypothesis[168].

6.3. MATLAB for Manufacturing Analytics
MATLAB is an integrated environment that is
especially useful in manufacturing analytics, as it
offers data analysis, machine learning, and system
modeling with it[169], [170]. The platform allows
engineers to get access to operation and test data
through databases, dedicated file formats, or
industrial IoT communication systems and offers
predictive analytics, process optimization, and digital
twin development tools[171], [172].

The twoway synchronization of MATLAB and
Python enables the teams to utilize the benefits of
both languages, and there are functionalities to
invoke Python libraries in MATLAB or package
MATLAB programs to run in Python programs. This
interoperability allows organizations to use the
powerful signal processing and control system
features of MATLAB with machine learning libraries

of Python[170], [173].

6.4. Node-RED for Industrial Automation
Following the release of the Node-RED graphical
programming platform, which is now a formidable
tool in the design of Industrial IoT applications, the
software has become useful in extending platforms
pertaining to PLC hardware, networks, and analytics
within the same development environment[174],
175], [176]. This is a browser-based platform that
operates with functions (also known as nodes) that
are linked in flow diagram layouts, and there are also
thousands of existing, off-the-shelf nodes that can be
used in different industrial applications[177].

The low-code model of Node-RED saves a lot of time
spent on the development of the tool because instead
of manually writing communication protocols and
data processing logic, pre-built functionality is
available[178], [179]. The platform is compatible
with a large quantity of industrial communication

protocols such as MQTT, HTTP, TCP, Modbus,
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OPC-UA, and UDP, which allows simplifying
communication over the PLC level to cloud
applications[180], [181].

According to survey data, Node-RED is finding more
significant applications in industrial automation
applications such as hosted dashboards, building
control, data processing, integration with PLC
devices and edge devices logic[175], [182]. This
feature of the platform to gather information using
the local devices such as PLCs, manipulate it in
useful forms, and transmit them to the cloud
providers makes it even more valuable in bridging
the operational technology and information
technology systems.

6.5. Sensor Integration and Data Acquisition

The basis of smart manufacturing today is the use of
modern data acquisition systems that transform
physical parameters into a series of digital data to be
processed and analyzed. Such systems combine
different types of sensors such as temperature sensors
(thermocouples, thermistors), pressure sensors,
accelerator and vibration sensors, flow sensors,

displacement sensor and photoelectric sensors[183],
184].

6.6. Discussion

The sensor signals are sampled using data acquisition
cards, which facilitate the digitalization of sensor
signals and the analysis of the digitalized data using
industrial control systems or through cloud
platforms. The IoT based data acquisition systems
involve sensor networks in remote data collection
and wireless transmission that allows real time
monitoring and management of equipment,
production processes and environmental
conditions[185], [186].

With proper sensor integration, it is possible to
achieve such critical manufacturing functions as real-
time monitoring and quality control, predictive
maintenance due to continuous monitoring of the
equipment health condition, production
optimization due to workflow and layout analysis,
and energy management due to consumption
monitoring[73], [187]. The combination of Al and
machine learning with sensor data will allow more
and more accurate prediction and automatic control,
where Al will study large volumes of historical data
and indicate equipment failures, quality problems,

and the most efficient production levels[188], [189].

Table 5 summarizes programming tools and their applications in Industry 5.0 implementations. Key

contributions include:

# Primary Key Strength Integration Use Case
Tool/Language |Function
1 Python Machine learning and Al |[Extensive ML libraries  |[IoT data analysis
2 R Statistical analysis IAdvanced statistics Quality control
analysis
3 MATLAB System modeling  and|Signal processing Digital twins
control
4 Node-RED Low-code automation Pre-built industrialReal-time control
nodes
5 OPC UA Industrial communication |[Semantic data models  [Machine integration
6 MQTT Lightweight communication [Minimal overhead Cloud connectivity
7 Sensors Physical data collection Real-time monitoring  |[Equipment health
3 Edge computing [Local processing Low-latency response  [Predictive control

Key conclusions include:

1. Python also has extensive machine learning
and Al, and features a high level of integration of
industrial protocols, which makes it a great choice
when creating [IoT applications and has to perform

advanced data analysis. The large Industry 5.0
ecosystem of libraries and community support helps

develop Industry 5.0 systems quickly[115], [116].
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2. R is also used in statistical analysis, quality
control  applications, which provide process
capability studies and statistical process control tools,
as needed by manufacturing organizations. The
effective data management in R renders it useful in

organizations with big historical data to be
analyzed[190], [191].
3. MATLAB integrates signal processing,

control systems, and machine learning into a single
environment and is strong in areas of developing
digital twins and optimization on the system level.
Hybrid Python integration has been made possible
via two-way integration to allow hybrid applications
that can exploit the control features of MATLAB
with machine learning libraries in Python[192],

[193].

4, The low-code graphical interface of Node-
RED can cut industrial automation development
time dramatically with factory-supported industrial
communication protocols and data processing
capabilities. The platform helps in rapid prototyping

and deployment of IloT solutions with little
knowledge of programming knowledge[177], [178].

5. Integration approaches that involve wide
varieties of sensors along with cloud-based data
acquisition platforms allow accessibility to real-time,
increased maintenance-related predictions, and
automated optimization choices. The capabilities of
Al analysis of sensor data are growing to offer
predictive capabilities that ensure prevention of
failures and proactive optimization of operations[34],

194].

7. Extended Reality for Workforce Development

The technologies of the extended reality are
revolutionizing the training of the workforce in the
manufacturing sector which has a severe lack of the
skills and allows transferring knowledge safely and
efficiently[106], [195]. This section discusses VR
training, AR-assisted operations, and hybrid methods
of developing the Industry 5.0 workforce. Figure 9
shows the Extended Reality (XR) technologies for

workforce development in Industry 5.0.

Extended Reality (XR) Technologies for Workforce Development in Industry 5.0

ot .iwnded Reality (XR) in Industry 5./

Augmented nuny {AR) Applications

]
\
]
J

Rastes tratming tmia by 40.50% * Impreva knswisaga retentisn by 7S%

© Bacrasts woripiacs seciasnts © Lawar traming cases By s0%

Figure 9: Extended Reality Applications - VR

7.1. Virtual Reality Training

VR allows employees to train based on how to use
the machinery,
emergencies in fully simulated, risk-free virtual space
before interacting with the real equipment. This

do maintenance, or react to

. AR

and MR for Training and Operatienaf Support

ability eliminates a very difficult issue of
manufacturing training, the cost and the difficulty of
giving  practice  using  costly  production
equipment[196].
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Research shows that VR-trained workers can
accomplish their tasks up to 40 times faster than in
more conventional methods and that VR-based mass
training is sometimes up to 52 times less expensive
than more traditional classroom training[107]. These
enhancements are due to a number of factors such as
the provision of immersive learning experiences that
involve the utilization of multiple senses, the
capability of practicing endlessly without the risk of
damaging equipment and also the ability to learn at a
pace of your own that suits various levels of
skills[197], [198].

The VR training applications in manufacturing
involve:

1. Training of equipment operation CNC
machines, injection molding equipment, and
assembly equipment[199], [200].

2. Preventive maintenance such as equipment

diagnosis, replacement, and troubleshooting[201],
202].

3. Hazardous situation and emergency response
safety training[203].

4, Inspection methods of quality control and
identification of defects[204].

5. Production changes to new product

assembly processes[205].

7.2. Augmented Reality Guidance

The AR applications also superimpose digital
information to the physical world that can be used as
a guide to assemble, maintain, and perform quality
inspections in real-time[206], [207]. The workers are
also able to see step-by-step holographic instructions,
equipment schematics, and operational procedures
that are in their field of view and they are free to
carry out their tasks.

This type of information at the point-ofneed
improves the learning processes and minimizes the
dependency on physical training resources and
increases the retention of the knowledge through the

interactive and hands-on learning[208], [209]. The
best manufacturers and leaders have shown
impressive improvements in the application of AR.
Volvo Group found AR as the best option to be
paper based quality assurance that developed digital
threads between engineering systems and assembly
technicians that allow AR experiences to be created
and updated within minutes instead of hours or
weeks[206], [210]. Digital twin technology is one of
the applications that Siemens deployed at their
Amberg electronics factory through AR visualization
to streamline the production and maintenance
processes, allowing employees to detect possible
problems at an early stage and conduct a more

efficient predictive maintenance[210], [211].

7.3. Mixed Reality Integration

Mixed reality (MR) is a set of VR and AR features
that allow to provide advanced training and
operations support. MR can enable trainees to
engage with virtual equipment but they can see their
physical surroundings and this results in building
hybrid training environments which become much
more easily transferred to real-world operations[212],
[213].

More sophisticated applications of MR devices
encompass collaborative training in which numerous
workers perceive common virtual objects located in
their physical areas, which make it possible to learn
together and coordinate team learning. Also, MR can
be used in hybrid maintenance in which the
technician is physically working on the actual
equipment and a virtual overlay is used as a guide,
performance  history data and  predictive

maintenance suggestions[214], [215].

7.4. Discussion
Table 6 summarizes extended reality technologies for
workforce development. Key findings include:

# XRIApplication Performance Cost Benefit Industry Use

Technology Improvement

1 VR equipment|40% faster task completion|Training costlAssembly, machining
operation reduction

2 VR maintenanceSkill acquisition|52% vs. traditional [Troubleshooting,
training improvement diagnostics

3 VR safety training Knowledge retention Risk-free practice  |Emergency response
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4 AR assembly guidance [Real-time instruction Error reduction Complex assemblies

5 AR maintenance|Faster troubleshooting Reduced downtime [Predictive maintenance
support

6 AR quality inspection |Accuracy improvement Defect detection Quality assurance

7 MR collaborative[Team coordination Knowledge sharing [Multi-worker processes
training

S Digital twin/Comprehensive System optimization |Equipment monitoring
visualization understanding

Key conclusions include: 8.1. Advanced Human-Machine Interfaces

1. VR training is an approach that allows The future will focus on human-friendly Al that will

practicing the risk-free environment, and, thus, it is
possible to complete the tasks 40 and 52 times faster
and save money 52 times more than traditional
training  techniques. The effects of these
improvements are due to limitless repetition of
specific practice and customized learning speed[200],
216].

2. The point of need AR guidance is visual
support in real-time overlaying the procedures on the
physical equipment, schematics, and data to
minimize errors and speed up the learning process.
Effective commercial applications indicate ~fast
development and integration of AR experiences,
which make them quickly adapt to process

modification[210], [217].

3. The hybrid training and operational
experience through the integration of mixed reality
allows virtual practice with virtual equipment and
real-world awareness of the physical environment,
which enhances the effectiveness of the transfer to

real-world manufacturing activities[210], [218].

4. The combination of digital twins and AR
and VR can be used to develop multi-dimensional
visualization systems that allow workers to perceive
complex systems in multiple ways- virtual practice
systems, realtime overlays, and predictive
analytics[1], [102].

8. Emerging Trends, Sustainability, and Future
Directions

There are a number of new trends that are defining
the future of Industry 5.0 research, implementation,
and manufacturing practice. In this part, the author
discussion delves into progressive human-machine
interfaces, sustainability integration, and workforce
development issues, as well as future research.

guarantee transparency, flexibility, and confidence in
the decision-making systems. Highly developed
cobots that can sense and learn better will allow
greater collaboration in common work areas. To
address very complex problems of the industrial
nature, hybrid decision-making will combine human
intuition and reasoning in the conditions of
uncertainty with the computational capabilities of Al
and huge quantities of data to effectively resolve the
problems[34], [219], [220].

ER technologies actively develop to enable human-
machine co-operation, and AR-assisted robot
programming tries to overcome the drawbacks of
traditional programming-by-demonstration
technologies, by increasing the modality of the
input[221], [222], [223]. There is a growing
development of virtual and augmented reality
applications of digital management of work places
and human-robot collaboration that can aid the

interconnected human-robot data transfer to
optimize the task assighment, motion planning and
manipulator coordination[222].

8.2. Sustainability and Circular Economy

The concept of sustainability and resource efficiency
is becoming a priority issue in Industry 5.0. The Al
technologies are also used to enhance the energy
efficiency, waste minimization, and use of resources
to help the manufacturer comply with the
environmental  regulations and  meet the
sustainability targets, as well as, increase the cost-
efficiency[81], [224], [225].

Circular economy principles are already being
developed in connection with Industry 5.0
technologies, and special attention is paid to bio-
inspired technologies and smart materials that will
enable materials with builtin sensors and other

https://thesesjournal.com

| Memon et al., 2025 |

Page 1909


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 3, Issue 10, 2025

functionalities and be recyclable. Simulation
technologies and digital twins can be used to model a
complete system to facilitate circular methods of
manufacturing and material consumption[226].

Figure 10 shows the Sustainable Manufacturing and
Circular Economy Integration in Industry 5.0.

Sustainable Manufacturing and Circular Economy Integration in Industry 5.0

Circular Economy Model

Industry 5.0 Integration

Sustainability Strategies

Resaurce Efficiency

Figure 10: Sustainable Manufacturing Framework with Circular Economy Principles and Environmental mpact Matrics

8.3. Workforce Development and Human-
Centricity

Solving human-related conflicts in Industry 5.0
implementation is an important field of research.
The main issues are how to incorporate the current
human factors into the cooperation with the latest
technologies, how to keep the constant industrial
and digital projects and introduce human aspects in
them, and how to focus on the development of skills
of workers and the technological growth[9], [16].
Resolution strategies that have been found in the
literature are the intelligent automation of
manufacturing processes to minimize redundant
tasks, the use of Industry 5.0 maturity models that
facilitates human-centricity, re-training of
manufacturing personnel on soft skills and academic
qualifications, and the creation of new tools to
support workers in the virtual realm[4], [9]. Including
performance-fatigue balance decision models and the
creation of technologies that meet the needs of the

workers and enhance human-focused value creation
are also perspectives of current research

importance[227], [228].

8.4. Research Challenges
There are a number of longterm problems that
should be addressed through research:

1. Security of cyberspace in IloT settings -
Safeguarding more and more manufacturing systems
with increasing connections to cyber attacks and

their effect on operation efficiency[229], [230], [231].
2. Data quality and integration - Providing data
flows between various legacy and new manufacturing
equipment that is reliable and consistent[232], [233],
[234].

3. Al explainability - Building clear machine

learning models that are comprehensible and
credible to manufacturing workers[235], [236], [237].
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4, Skills  development - Educating the
workforce to handle Industry 5.0 jobs that need
technical skills and humanistic skills[4], [69].

5. Standardization - Developing universal
standards of industrial protocols, data formats and
system interfaces so that they are interoperable[4],

[30]

8.5. Future Research Directions
The research opportunities that can be advanced to
support Industry 5.0 are:

1. Federated learning - Creation of distributed
machine learning models, which allow training Al
models on multiple facilities and maintain the

privacy of all the data[30], [116], [238].

2. Quantum  computing  applications -
Investigating the application of quantum algorithms
in solving complex optimization manufacturing
problems that cannot be resolved by classical

computational facilities[239], [240].
3. Bio-inspired manufacturing - Biological
lessons on resilient, adaptive manufacturing

processes[241].

4, Human-Al collaboration models - Designing
conceptual frameworks and procedures to assign and
interact tasks to humans and machine in the best

way achievable[242], [243].

5. Sustainable manufacturing systems - Circular
economy focused manufacturing with Industry 5.0s
to create zero-waste manufacturing[24].

6. Edge Al systems - Further development of
the capabilities of on-device machine learning to
enable real-time decision-making without the need to
connect to the cloud[69], [244].

8.6. Discussion

This section integrates the new trends and research
priorities in  developing Industry 5.0. Key
conclusions include:

1. In the advanced human-machine interface
development is concentrated on transparency,
adaptability and trust as it is acknowledged that
acceptance of technology relies on the understanding
and the trust of the user towards Al-driven systems.
Cobots of the future with more advanced sensing
and learning will allow more complex scenarios of

cooperation[245].

2. Sustainability integration is an ideal change
to manufacturing philosophy as a continuation of
efficiency optimisation to
responsibility and the principles of a circular
economy. This shift will need coming up with Al
systems that are sustainable and productive[244].

environmental

3. The development of the workforce is also
one of the significant barriers to implementation,
which requires the combination of technical skills
development with the development of soft skills and
the development of meaningful work that utilizes

human individuality[4].

4, Cybersecurity,  data  integration, Al
explainability, and standardization are urgent
problems that need to be resolved on an industry-
wide level and allow the Industry 5.0 to be used all
over the world[4], [246].

5. New research topics such as federated
learning, applications of quantum computing, bio-
inspired manufacturing, and sustainable system
design are expected to give Industry 5.0 its next leap
forward. These guidelines imply that there will be a
shift towards manufacturing systems that are more
and more distributed-intelligence based, more
environmentally responsible, and more human

friendly[4], [246].

9. Conclusion

Industry 5.0 is a vision statement of how the
manufacturing industry should look like in the
future where human workers will be at the centre of
more and more digitalized and automated
manufacturing settings. When humans and robots
work together, artificial intelligence and machine
learning, Industrial Internet of things, cyber-physical
systems, and augmented/virtual reality are all
integrated, complete ecosystems are formed, which
help improve productivity and human well-being.
This review has captured the complex aspects of
Industry 5.0 development and implementation. The
human-centric ~ philosophy of Industry 5.0,
particularly in comparison to the technology-centric
nature of Industry 4.0, is the initial indication of the
fact that sustainable manufacturing is successful only
when the efficiency is combined with the human
dignity,  sustainability, and resilience.  The
collaborative technologies between humans and
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robots show that technological development can
make human workers better contributors, and the
manufacturing work is safe, productive, and
meaningful.

The infrastructure to support operational excellence
and human-centric manufacturing is a set of smart
manufacturing technologies such as IloT, cyber-
physical systems, and digital twins, which are used to
support real-time monitoring, data-driven decision-
making, and adaptive production systems. The
application of artificial intelligence and machine
learning in predictive maintenance, quality control,
and optimization of production are examples of how
high-tech technologies can supplement the human
decision-making process and speed up the process of
innovative development.

Industry 5.0 is based on a large number of
programming tools (Python, R, MATLAB, Node-
RED), industrial communication standards (OPC
UA, MQTT), and overall sensor integration
strategies that allow manufacturers to create
responsive and intelligent production systems. The
ER technologies transform the process of workforce
development by providing the ability to train in the
immersive environment and guiding the operations
on the point-of-need basis.

The publication of research in high-impact journals
demands the use of strategic strategies that include
quality research, journal selection, as well as effective
presentation, whereby researchers will be able to
share the advances of Industry 5.0 with the global
manufacturing and academic fraternity.

The current developments such as high-tech human-
machine interfaces, sustainability, and the principles
of the so-called circular economy suggest that future
manufacturing systems will be more oriented towards
responsible attitudes towards the environment and
human well-being in equal ratio. Ongoing research
issues such as cybersecurity, data integration,
explainability of Al, or workforce development are
issues that need to be addressed to achieve the
transformative potential of Industry 5.0.

The shift aimed at Industry 5.0 promises high
opportunities to develop the manufacturing
capacities and provide safer and more satisfying and
sustainable working conditions. The vision will
require more studies and development of these
interrelated areas of technology together with

changes within an organization in support of human-
centric values to handle the complicated issues of the
next generation manufacturing systems.
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