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 Abstract 

The current development of manufacturing technologies and the ongoing necessity 
to build sustainable and human-focused production systems are posing a serious 
threat to the conventional automated manufacturing systems. The Industry 5.0 
vision that entails billions of intelligent devices cooperating with human laborers 
in intelligent manufacturing network must resolve the issue of human-machine 
synergy and leverage the new technologies of artificial intelligence, machine 
learning, and cyber-physical systems. Human-centricity is a challenge that has 
limited human-centricity in the current continuum of Industry 4.0 applications, 
which drives us to consider human-robot collaboration (HRC) as the solution to 
the next-generation manufacturing. Industry 5.0 allows pigmenting human 
capabilities through intelligent robotic systems without compromising the human 
creativity, flexibility, and ability to make decisions. This paper aims to discuss 
Industry 5.0 as a paradigm shift in the development of human-centric smart 
manufacturing and open the way to intelligent production systems of the future to 
struggle against the sustainability, resilience, and well-being of the working 
community. We initially point out the transformation of Industry 4.0 into 
Industry 5.0 and the overall change in manufacturing towards being human 
centered. Then we explore HRC as an effective intervention to improve the safety 
and productivity at work place. Next, we discuss the smart manufacturing 
architecture such as IIoT, cyber-physical systems, and digit twin applications, to 
exploit the interconnected digital technologies. To learn about data processing and 
system optimization, we illustrate predictive maintenance and quality control as 
well as data-based optimization schemes of production that use AI/ML. In 
addition, we also explain industrial communication standards (OPC UA, 
MQTT), programming environments (Python, R, MATLAB, Node-RED), and 
sensor integration methods towards the implementation of Industry 5.0 systems. In 
a similar manner, to meet the workforce development demands, sufficient extended 
reality (XR) training solutions and human-machine interface designs are discussed, 
as well as the aspects of sustainability and the integration of the circular economy. 
Lastly, we point out the Industry 5.0 applications with current research issues and 
future perspectives of the next-generation smart manufacturing systems. 
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INTRODUCTION
Based on the industry estimates, the market of smart 
manufacturing will continue to grow to $384.8 
billion by 2025, as more manufacturers advance AI, 
IoT, and robotics solutions in a bid to improve the 
efficiency of their operations [1]. Equally, 78 percent 
of manufacturers, according to Deloitte 2025 Smart 
Manufacturing and Operations Survey, have adopted 
or are planning to adopt AI-driven automation 
technologies [2]. This massive implementation of 
smart technologies in the production process, the 
accentuation on human-robot cooperation systems, 
and the combination of IIoT with smart-physical 
systems enables manufacturing processes to be 
attached to ubiquitous digital networks [3]. 
Nevertheless, the issue of traditional Industry 4.0 
implementations is the smaller emphasis on the 
human-centricity and well-being of the workers. 
Therefore, numerous effective automated 
manufacturing systems do not utilize human 
creativity, adaptability, and decision-making in full 
[4]. 
In recent years, the sphere of manufacturing has 
achieved a lot in terms of technology, such as 
integration of artificial intelligence and machine 
learning to predict analytics, connection of smart 
equipment in IIoT networks, the use of cyber-
physical systems to monitor in real-time, and better 
methods of collaboration between humans and 

robots [5]. Such technological progress is slowly 
taking us to one of the most revolutionary stages of 
production- the next generation of human-centric 
smart manufacturing- Industry 5.0 that will add value 
to human ability without removing the advantages of 
automation in the new intelligent production models 
[6], [7]. 
 
1.1. Limited Human-Centricity: A Challenge 
Conventional Industry 4.0 deployments are mainly 
centered on automation effectiveness and cost-
reduction, commonly considering human employees 
as parts, which could be substituted instead of 
empowering them [8]. Until the recent past, the 
manufacturing systems were more concerned with 
the technological development without fully taking 
into account the state of the workers, job 
satisfaction, and the human qualities of creativity 
and adaptability which are not easily replaceable [9]. 
Figure 1 shows the evolution from Mechanization to 
Humanization. Today Industry 5.0 is focused on 
human-centered solutions that view workers as key 
sources of innovation and the ability to solve issues. 
This paradigm shift promotes sustainable production 
as well as improving workforce participation. In 
addition to the efforts to maximize the automation, 
there are a number of suggestions targeting the 
human-centricity issues in manufacturing[9], [10].  
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These proposals include:  
● Human-robot cooperation systems to 
combine human creativity and robot accuracy with 
concerns on workplace safety and ergonomics[11]; 
● Adoption of AI/ ML technologies to 
support the workings of human decision-making, 
instead of overtaking human workers[12];  
● Virtual work experiences to improve 
employee competencies and minimize accidents in 
the workplace [13], [14] ;  
● Optimization production plans that are 
based on data can enable employees with practical 
knowledge and still maintain human autonomy[15], 
[16].  
Such human-focused solutions improve the 
interactions and satisfaction of employees without 
losing the advantages of automation[16], [17]. 
Nevertheless, the realization of a human-machine 
synergy is one of the basic challenges that presuppose 
a wide-scale connection of various technologies[18]. 
So, what would be the answer to this enduring 
predicament? This is the issue that encourages us to 
investigate Industry 5.0 concepts. 
 
1.2. Towards Human-Centric Smart Manufacturing 
What would happen to the manufacturing systems 
should they be able to incorporate human 
intelligence and efficiency with machine efficiency 
seamlessly? Human creativity and adaptability would 
not be lost since we are reaping the gains of 
automation[19], [20]. The vision would enable 
manufacturers to prevent the adverse effects of too 
much automation such as losing employees to jobs 
that are being automated, lack of innovation and job 
satisfaction[21], [22]. Industry 5.0 Smart 
manufacturing systems would enable human workers 
to have smart tools. The concept of human-centric 
manufacturing allows employees to add value to the 
work and have the support of sophisticated 
technologies. Industry 5.0 has positive aspects as 
outlined below: 
● Robot accuracy can be used in 
manufacturing processes as well as human ingenuity.  
● Employees enjoy increased job satisfaction 
and significant involvement.  
● The production systems are in a better 
position of sustainability and resilience.  

These characteristics would transform the existing 
idea of automating the manufacturing process. 
Besides, such features would allow genuinely 
intelligent production systems that would take 
sustainability concerns into account and respect 
human dignity. The manufacturing plants would be 
very efficient and at the same time keep both the 
workers as well as the environment[23]. The most 
recent studies by the European Commission have 
presented the Industry 5.0 paradigm, which focuses 
on human-centricity, sustainability, and resilience as 
the complementary policies to the efficiency-centered 
approach of Industry 4.0[24]. This model gives a 
good guideline to the manufacturers that are moving 
towards Industry 5.0 implementations. 
 
1.3. Human-Robot Collaboration: A Solution to 
Limited Human-Centricity 
Conventional industrial robots are used in secluded 
cells where they are not in contact with the human 
workers to avoid accidents. Human-robot 
collaboration (HRC) is a form of robotics, unlike 
traditional industrial robotics, which enables human 
and robot to establish their mutual workspaces, 
enabling the two parties to utilize their 
complementary abilities[25], [26]. Nevertheless, HRC 
discusses the benefit of collaborative robots (cobots) 
that will have enhanced safety (e.g., force limiting, 
collision detection, adaptive control), and in this way 
will transform manufacturing processes[27]. 
Nowadays, the development of HRC systems with 
the improvement of productivity, as well as safety, is 
of great interest among the researchers who want to 
overcome the human-centricity issues in smart 
manufacturing[27]. 
The benefits of Industry 5.0 are AI-based robotic 
systems that can learn by watching people, as well as 
adaptive control algorithms with multi-modal sensing 
capabilities[28]. Cobots can learn by responding to 
human intentions with these technologies and 
changing their behavior. Therefore, we examine 
HRC systems that facilitate human-centric 
production in the new smart production settings[27], 
[29]. The current literature has provided 
comprehensive reviews of the most recent advances 
in collaborative robotics and safety standards of the 
HRC applications.  
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Our survey adds to these works by considering HRC 
through the lens of Industry 5.0 as an approach that 
incorporates human-centricity with new 
technologies, such as AI/ML, IoT, cyber-physical 
systems, and extended reality. Moreover, our 
direction closes the gap between past studies of 
Industry 4.0 orientation and current trends in 
Industry 5.0 in that we include integrated smart 
manufacturing ecosystems that prioritize human 
work and take advantage of advanced automation. 
This paper will attempt to provide a comprehensive 
survey on Industry 5.0 as a new paradigm towards 
attaining human-centric smart manufacturing in next 
generation production systems. To be specific, the 
following points are addressed in this paper: 
● We talk about Industry 4.0 to Industry 5.0 
and introduce HRC as the one of the possible 
solutions to human-centric manufacturing. 
● Our offerings are intelligent manufacturing 
systems such as IIoT architecture, cyber-physical 
systems, and Industry 5.0 implementation of digital 
twins. 
● We show AI/ML solutions such as 
predictive maintenance, quality control and data-
driven production optimization schemes. 
● We emphasize the industrial communication 
standards, programming platforms, and sensor 
integration methods to apply the Industry 5.0 
systems. 
● We demonstrate workforce training 
applications, future approaches to research 
publication, and sustainability issues and work 
directions. 
The remainder of the article will be structured in the 
following way. Part 2 is dedicated to the Industry 5.0 

paradigm shift of technology-driven to human-centric 
manufacturing. Section 3 addresses human-robot 
collaboration systems and safety issues. Section 4 
discusses intelligent manufacturing technologies such 
as IIoT, communication protocols and cyber-physical 
systems. In Section 5, AI/ML uses in predictive 
maintenance, quality control, and optimization of 
production are described. Section 6 thinks about the 
programming tools and sensor integration with 
Industry 5.0 implementation. Section 7 represents 
examples of extended reality technologies to develop 
the workforce. Section 8 refers to the future trends, 
sustainability and outlook. Lastly, there is a 
conclusion to the article in Section 9. 
 
2. The Industry 5.0 Paradigm: From Technology-
Driven to Human-Centric Manufacturing 
The shift, which occurred between the Industry 4.0 
and Industry 5.0, is not just an incremental 
advancement in technology, but it is a complete re-
imagination of how humans and the manufacturing 
technologies relate to one another[4], [7]. The 
concept of Industry 5.0 was a result of the realization 
of the shortcomings of the fully automation-oriented 
strategy and invaluable role of human imagination, 
flexibility, and moral judgment in the manufacturing 
environment[7], [12]. 
 
2.1. Defining Industry 5.0 
European Commission officially introduced the 
Industry 5.0 concept, which is seen as a continuation 
of Industry 4.0, making research and innovation its 
drivers towards a sustainable, human-centered, and 
resilient European industry[30], [31]. Within this 
definition, three pillars form its basics as shown in 
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Figure 2: 

 
Human-centricity: The manufacturing systems shall 
be geared to meet the needs of the workers, as well as 
consider the basic rights of humanity, autonomy, 
and privacy in the workplace, in addition to 
establishing inclusive workplaces. This pillar will 
make sure that the implementation of technologies 
can boost the human capabilities and job satisfaction 
but not reduce them. 
Sustainability: The production processes are 
environmentally friendly by considering the concept 
of the circular economy, efficient use of resources, 
and the use of renewable energy. Industry 5.0 
acknowledges planetary boundaries as restriction 
limits within which manufacturing has to operate. 
Resilience: The manufacturing systems are resilient 
to disruptive attacks by having flexible technologies, 
diversified supply chain, and strong cyber-physical  

 
infrastructures. Strong structures adapt well to the 
market variations, supply chain disruptions, and 
unforeseen difficulties. 
 
2.2. Evolution from Industry 4.0 
Table 1 Shows the complete evolution. The initial 
industrial revolution entailed the mechanical 
production with the aid of water and steam . Mass  
production became a reality in the second revolution 
with the help of electrical energy and assembly lines. 
The third revolution allowed automated production 
by the means of electronics and information 
technology. The fourth revolution involved the 
introduction of the cyber-physical systems and self-
directed functioning with availability of interrelated 
smart technologies[32]. 
 

 
Table 1: Complete Evolution from Industry 1.0 to 5.0 
Industrial 
Revolution 

Era Key Technologies Focus Worker Role 

Industry 1.0 1760s–
1840s 

Water/steam power Mechanization Labor replacement 

Industry 2.0 1870s– Electrical power, assembly lines Mass production Mass labor 
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1970s 
Industry 3.0 1970s–

2010s 
Electronics, IT, computers Automation System 

monitoring 
Industry 4.0 2010s–

present 
IoT, AI, cyber-physical systems Autonomous operations Limited 

involvement 
Industry 5.0 2020s–

future 
Human-AI synergy, resilience, 
sustainability 

Human-machine 
collaboration 

Active partnership 

 
Industry 5.0 takes the Industry 4.0 as the basis and 
tackles the urgent gaps. Where Industry 4.0 focused 
on the ability to substitute human labor with 
automation, Industry 5.0 focuses on expanding 
human abilities by using collaborative 
technologies[6], [30], [33]. Where Industry 4.0 
focused on efficiency and productivity, Industry 5.0 
strikes a balance between the two and sustainability 
and human well-being of the workers. Industry 4.0 
focused on creating autonomous systems, whereas 
Industry 5.0 focuses on developing symbiotic human-
machine relationships, which use complementary 
advantages[30].  
 
2.3. Human-Centric Manufacturing Principles 
Human centric production appreciates that human 
beings possess special attributes to production setups 
which cannot be imitated by machines. The power of 
creativity allows innovation and finding solutions to 
new circumstances[20], [21]. It would enable proper 
cooperation and leadership. Flexibility enables quick 
reaction to the changing conditions. Moral judgment 
determines the responsible decisions that are in 
accordance with the values of society. 
The manufacturing systems that are built in line with 
the Industry 5.0 principles make technology an 
empowerment of human potential instead of 
displacing human workers[4]. There is collaboration 
between robots and humans where the former 
perform the physically demanding, repetitive or 
hazardous work but the latter are involved in solving 
problems creatively, making quality judgments and 
initiating constant improvement projects [12]. AI 
systems can be used to support decision-making by 
studying massive amounts of data and detecting 
patterns in this data, whereas humans apply their 
insights to the larger context and decide taking into 
account ethical consequences[34]. 
 
 

2.4. Discussion 
This part is a summary of the Industry 5.0 paradigm 
and how it differs with the past industrial paradigms. 
The significant contributions are as follows: 
⒈ In its definition, the European Commission 
sets three cornerstone pillars, namely human-
centricity, sustainability, and resilience, as additional 
objectives to the efficiency of Industry 4.0. Such a 
framework gives a definite roadmap to 
manufacturers who move towards Industry 5.0 
implementations by making the articulation that the 
success of technology depends on striking a balance 
between human needs and its efficiency in 
operations[4]. 
⒉ The 5.0 industry supports the most severe 
shortcomings of totally automation-oriented 
strategies, such as acknowledging the invaluable role 
of human creativity, flexibility, and moral judgment. 
This realization makes manufacturing philosophy 
more of human ability enhancement than the 
replacement of human labor, thus workforce 
engagement and not displacement[21]. 
⒊ Human-centric manufacturing values make 
technology an enabler and not a substitute to allow 
the system to be able to take advantage of the 
complementary human and machine strengths. This 
can be used to increase productivity and worker 
satisfaction by developing meaningful work 
environments where technology helps to supplement 
human contribution, as opposed to reducing it.[21] 
⒋ The shift to Industry 5.0 calls manufacturers 
to rethink the approaches to the application of 
technologies so that the new systems would create 
more opportunities to humans without violating 
their basic rights and encouraging sustainable use. 
The strategic change impacts the system design, 
training of workers and the organizational 
culture[35]. 
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3. Human-Robot Collaboration: An Effective 
Solution 
Human-robot collaboration is the technology that is 
the foundation of the human-focused vision of 
Industry 5.0[4], [36]. HRC systems enable human 
beings to collaborate with robots on the same 
working areas and integrate human thinking with 

robot accuracy and consistency[27]. This chapter 
examines HRC systems, safety standards, 
communication strategies, and AI integration to 
work together in the manufacturing. Figure 3 shows 
the Human-Robot Collaboration: System 
Architecture and Safety Standards. 
 

 

 
3.1. Understanding HRC Systems 
Conventional industrial robots work within safety 
fences since they are very fast, have a big capacity and 
may be dangerous to other humans near the 
robots[37]. Cobots (also known as collaborative 
robots) are specifically developed to operate safely 
together with human workers using a variety of safety 
features[38]. Force limiting ensures that the cobot is 
not able to act with a high amount of force which 
can hurt someone in case of unplanned contact[38], 
[39]. The sensors are used in collision detection that 
instantly halts the movement of the robot in case of 
human presence. The adaptive control algorithms 
vary the speed or path of the robot depending on the 
distance between the robot and the human[40]. 
The International Federation of Robotics estimated 
that collaborative robotics was going to expand 
substantially, with the industry shipment amount 
projected to be much higher as safety and flexibility 
advantages are acknowledged by manufacturers[41], 
[42]. The current generation of cobots is much 
lighter than the old industrial robots and can be 
reprogrammed easily to perform new functions, as  

 
 
well as being much more affordable to use and 
maintain[42], [43]. 
What are the ways of safe co-operation of 
manufacturing operators with high-speed robots? The 
solution is in joint-design of robots that restricts 
forces and velocities by making innovative 
mechanical and control systems. Sophisticated 
sensory arrays can sense the presence of people and 
surrounding activities which can be used to alter the 
behavior of the robots in real time[12], [44]. 
 
3.2. Safety Standards and Guidelines 
The most important issue of HRC implementations 
is safety. Numerous international standards offer 
integrated guidelines on safe coexistence of humans 
and robots. The ISO 10218:2025 standard (which 
incorporates the previous ISO/TS 15066 to 
collaboratively operate robots) sets safety standards 
concerning the industrial robot systems and 
collaborative robots (in applications)[45], [46]. 
ANSI/RIA R15.06 in the United States are 
complementary safety standards, which cover the 
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safety-rated monitoring, collaborative workspace 
design, and risk assessment[26]. 
These standards present four ways of collaborative 
operations: 
Stop with safety rating: When a human being enters 
the collaborative work place, the robot will 
automatically stop and will resume their work when 
the human leaves[47]. 
Hand guiding: A human operator also controls the 
robot end-effector using his hand, and the robot 
assists with providing power to the heavy parts[39], 
[48]. 
Speed monitoring and separation monitoring: The 
robot decreases speed when human are near and 
halts in case minimum separation distances are not 
met[46], [48]. 
Restraints of power and force: Naturally designed 
safe robot designs restrict power to levels that cannot 
harm the contacting parties even at the point of 
contact[39], [49]. 
Studies have shown that well installed HRC systems 
can minimize the injuries at the workplace by up to 
72 percent in comparison with the conventional 
manufacturing surroundings[37], [50]. These 
advantages of safety can be attributed to the fact that 
cobots take on physically challenging and hazardous 
jobs and put repetitive strain injuries in the 
background as well as cut down human error in case 
of fatigue[41], [51]. 
 
3.3. Communication in HRC 
Successful interaction between human beings and 
robots needs to be intuitive. The conventional 
industrial robots need specific programming skills, 
which puts a barrier between workers and robots[52], 
[53]. Contemporary HRC systems make use of 
various modalities of communication to enable 
natural human-robot interaction[54]. 
Verbal Communication: Voice commands enable 
the workers to command robots in natural language. 
The speech recognition systems comprehend and 
convert the commands to the actions of the robot. 
Voice feedback gives state and intention reports on 
the robot and alerts[55], [56]. 
Non-verbal Communication: This is through 
gestures that allow control of the robot intuitively 
without having to touch it. Computer vision systems 
are able to identify the hand signals and body 

movements to detect human intentions. Visual cues 
such as display screens and lights communicate the 
aspect of robot position to the nearby employees[57], 
[58]. 
Haptic Communication: Force feedback: The force 
feedback gives feedback on the hand-guiding 
operations. Robots can respond to physical contact 
by using touch sensors that identify touch. Vibration 
patterns or change of pressure can be used to 
communicate information using tactile displays[59], 
[60]. 
The most up-dated research findings have pointed 
out communication, both verbal and non-verbal, as 
one of the factors that contributed to effective HRC 
implementations. Non-verbal cues can play a 
significant role in updating the robot status in the 
collaborative work and improve understanding and 
coordination between the human employees and 
cobots[29]. 
 
3.4. AI Integration in HRC 
Current developments in HRC deployments have 
been more and more focused on the use of artificial 
intelligence to allow the adaptive operation of robot 
and learning by human example. Cobots can visually 
learn responses to human tasks through machine 
learning algorithms, which acquire ideal motion 
patterns, grasping methods, and assembly steps after 
observing human tasks[43], [61]. Reinforcement 
learning allows robots to become more efficient due 
to the trial and error interaction with the 
environments with the supervision of humans[62]. 
HRC systems based on AI can also be used to assign 
tasks dynamically, automatically distributing tasks to 
people and robots according to task demands, 
human workload, and robot capacity[27], [63]. Deep 
learning and computer vision help robots perceive 
complicated scenes and identify objects in a noisy 
environment, as well as design grasping strategies 
that suit various constituents[64], [65]. 
This idea goes beyond physical cooperation to 
human-AI synergy, merging human mental faculties 
such as creativity, situational insight, and moral 
judgment with AI computational capabilities such as 
fast information processing, pattern identification 
and optimization[66]. Such synergy enhances the 
quality of decision making, operations and 
innovation level in manufacturing settings. 
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3.5. Discussion  
Table 2 summarizes human-robot collaboration technologies and their applications in Industry 5.0 
manufacturing. The main contributions are as follows: 
# HRC 
Technology 

Mechanism Key Benefits Standards 

1 Force limiting Prevents injury through inherent mechanical design ISO 10218:2025 
2 Collision detection Real-time monitoring and response to human 

proximity 
ANSI/RIA 
R15.06 

3 Adaptive control Dynamic speed and trajectory adjustment ISO/TS 15066 
4 Verbal communication Natural language interaction for task specification ISO 13849-1 
5 Gesture recognition Non-verbal control and status communication ISO 10218-2 
6 Machine learning Learning from human demonstrations for task 

adaptation 
ISO 10218-1 

7 Reinforcement 
learning 

Performance improvement through human feedback ANSI/RIA 
R15.06 

8 Dynamic task 
allocation 

AI-based distribution of work between humans and 
robots 

ISO 13849-1 

Key conclusions include:  
 
● The collaborative robots have various safety 
features such as force limiting, collision sensors and 
adaptive control to facilitate safe working conditions 
with human workers without the use of safety nets. 
This is a technological innovation that allows flexible 
manufacturing arrangements, human-robot 
collaboration in varied assembly operations. 

● The ISO 10218:2025 (ANSI/RIA R15.06) is 
an international standard of safety that offers a 
detailed set of guidelines that identify four modes of 
collaboration and safety requirements. Adherence to 
such standards will make HRC implementations 
secure the safety of the workers and full productivity 
benefit by means of standardized risk assessment and 
risk management[37]. 
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● Multi-modal communication, such as 
through verbal commands, gesture recognition and 
haptic feedback, allows human- robot 
communication to be intuitive without the need to 
have specific knowledge of programming skills. 
Figure 4 shows the multi model communication in 
Human-Robot Collaboration. Natural 
communication interfaces decrease training and 
increase the acceptance of collaborative robotics to 
workers in manufacturing facilities[67]. 
● Due to AI integration, cobots can learn 
human demonstrations, change behaviors according 
to the environmental factors, and make decisions in 
the dynamic allocation of tasks. These intelligent 
features contribute to the flexibility of the HRC 
systems, as well as the possibility of continuing the 
improvement of collaborative activities because of 
the continuous learning[29], [53]. 

● The studies show that effectively deployed 
HRC systems can lessen injuries at the workplace by 
as much as 72 percent and enhance productivity by 
distributing human and robot tasks optimally. These 
two advantages of increased safety and effectiveness 
confirm the humanistic nature of Industry 5.0 to 
transform the manufacturing process[33], [68]. 
 
4. Smart Manufacturing Technologies 
Smart manufacturing is the technological basis that 
allows Industry 5.0 to operate via connected digital 
systems that allow real-time monitoring, data-driven 
decision-making and adaptive production[30], [69]. 
IIoT architectures, communication protocols, cyber-
physical systems, digital twins, and extended reality 
applications are discussed in this section[68], [70]. 
Figure 5 shows the IIoT Architecture for Smart 
Manufacturing. 
 

 
4.1. Industrial Internet of Things 
The Industrial Internet of Things is the nervous 
system of the modern smart factories, which links 
machines, sensors, actuators, and devices into 
elaborate networks that allow data gathering, data 
analysis, and control[71]. The IIoTs are systems that 
incorporate conventional manufacturing devices to 
include smart sensors, wireless communication units,  

 
 
and edge computing units to form intelligent and 
responsive production systems[72]. 
The world AI in IoT market shows speedy growth 
and it is expected to grow at 27 percent/year till 
2026 as manufacturers are becoming more aware of 
the benefits of the IIoT [73]. Efficient connectivity 
devices, especially 5G networks, revolutionize IIoT 
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features by offering up to about 1 gigabyte per 
second download rates and negligible latency[74], 
[75]. This improves bandwidth to allow huge data 
flows needed to monitor, control and optimize 
complex manufacturing processes in real time. 
The application of IIoT allows a number of essential 
functions: 
⒈ Real time equipment monitoring monitors 
the operational parameters such as temperature, 
vibration, pressure and energy consumption[76]. 
⒉ Predictive maintenance uses sensor data to 
predict possible failures in equipment prior to them 
happening[77], [78]. 
⒊ Vision sensors and measurement gadgets 
allow quality control systems to detect defects during 
production[79], [80]. 
⒋ Energy management tracks the consumption 
patterns and manages them in the most efficient way 
possible in order to save on costs and impact on the 
environment[81], [82]. 
⒌ Supply chain visibility is a monitoring tool 
that monitors materials, parts, and completed goods 
along the manufacturing and distribution chains[83], 
[84]. 
 
4.2. Industrial Communication Protocols 
Modern industrial systems need a standard 
communication protocol that will guarantee 
communication interoperability among various 
equipment of different vendors. There are two 
protocols that prevail in Industry 5.0 
implementations: OPC UA (Open Platform 
Communications Unified Architecture) and MQTT 
(Message Queuing Telemetry Transport[85], [86]). 
OPC UA is a complete framework that is a secure 
and platform-independent industrial 
communication. The protocol is compatible with 
hierarchical data model of complicated machine 
structures, process parameters and production 
information[87]. Inbuilt security systems comprise 
encryption, authentication, authorization and audit 
logging to counter the cyber threats. OPC UA also 
allows both client-server designs around 
conventional request-response designs and publish-
subscribe designs to provide an efficient event-driven 
communication design[88]. 

MQTT is a simple publish/subscribe protocol that is 
optimized to run on a small device with a low-quality 
network[89]. The low overhead of the protocol is 
suitable to the devices in the IoT that have low 
processing power and battery capacity. The quality-of-
service levels of MQTT provide delivery of messages 
depending on its application needs of the best-effort 
delivery as well as guaranteed exactly-once 
delivery[90], [91]. 
More and more manufacturers are using hybrid 
communication structures that combine the two 
protocols. OPC UA is used to implement structured 
industrial communication to secure factory 
networks, and it offers machine-to-machine 
interactions with semantic richness and security. 
MQTT supports cloud-connectivity and off-secure-
network data-transmission, which allows analytics 
platforms and remote-monitoring systems to access 
the production data[91], [92], [93]. 
 
4.3. Cyber-Physical Systems 
Cyber-physical systems are the combination of 
computer algorithms with physical manufacturing 
systems by means of embedded computers, sensors, 
actuators, and networks[94]. CPS implementations 
watch physical systems in real-time, process sensor 
information with embedded algorithms and it 
controls actuators by decisions computed, to form 
closed-loop feedback systems[95]. 
In world, CPS market size stood at 118.20 billion in 
2024 and it is expected to grow at 13.7 percent per 
annum to 2030. This high rate of market expansion 
indicates growing awareness in the benefits of CPS 
such as high operational efficiency, quality products, 
lessening downtime, and increasing resource 
utilization[96], [97]. 
Figure 6 shows the cyber-physical systems: five layer 
architecture for for Industry 5.0. CPS architectures 
usually consist of two or more layers: 
Physical layer: Production machinery, sensors, and 
actuators. 
Network layer: Physical infrastructure that links 
physical components. 
Computing layer: Data processing devices and 
cloud-based computing. 
Application layer: Software systems which offer 
monitoring, control and optimization capabilities. 
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Business layer: Enterprise system is a system that 
links business processes to manufacturing 

operations. 

 

 
What are the ways of manufacturing systems to be 
real-time responsive and yet be secure and reliable? 
The solution is the closely designed cyber-physical 
systems where physical devices transfer data between 
physical systems and computational layers and 
decision systems in closely integrated feedback 
loops[98]. 
 
 
 
 

4.4. Digital Twin Technology 
Digital twin technology is an almost real-time and 
historical-based method of creating virtual versions 
of a physical object, system or full factory that 
resembles its real-life equivalent. Digital twins permit 
manufacturers to track the equipment performance, 
simulate the working conditions, optimize the 
processes, and predict the future activities without 
interference with the real production[99], [100]. 
Figure 7 shows the Digital Twin Frame work for 
Industry 5.0. 
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The segment that exhibits the best growth rate in 
CPS markets is the digital twin one because the 
capabilities are revolutionizing predictive analysis, 
simulation, and optimization. Companies that use 
digital twins have noticed high positive results such 
as 20-50% reduction of equipment downtime, 10-
30% productivity increase, and 5-15% costs of 
maintenance reduction[101], [102]. 
 
Applications of digital twins lie on a maturity scale: 
● Descriptive twins: Visualize sensor-based 
current asset state. 
● Informative twins: Report on historical 
performance and analytics. 
● Predictive twins: Predict the future with 
models of machine learning. 
● Prescriptive twins: Advise the best actions by 
prediction. 
● Independent twins: Auto-implement 
optimization decisions. 
Digital twins can be used to provide augmented 
reality and add strong visualization capacities. AR 
headset-wearing technicians can observe 
maintenance processes, equipment diagrams, and 
real-time operational information superimposed on 
the real machinery, increasing the level of 
comprehension and decreasing the number of 
mistakes in the maintenance processes[103], [104]. 
 
4.5. Extended Reality for Manufacturing 
Extended reality (XR) technology that includes 
virtual reality (VR), augmented reality (AR), and 
mixed reality (MR) technologies is changing the 
manufacturing training, operations, and quality  

control. The technologies strike upon important 
issues in the development of the work forces, 
especially a severe lack of skilled labor in the 
manufacturing industry[105], [106]. 
VR will allow workers to learn how to work the 
machinery, how to do maintenance, or how to react 
to an emergency in fully simulated, risk-free virtual 
conditions, and then apply these skills to real 
equipment[107], [108]. Literature shows that workers 
who received training through VR take up to 40 
percent shorter time to accomplish tasks with 
compared to traditional training methods, and 
training through VR in a large group is up to 52 
percent more affordable compared to traditional 
training[109], [110]. 
AR applications are digital tools that superimpose 
data onto the physical environment, offering real-
time visual instructions to an assembly process, 
maintenance, and quality inspection procedure[111], 
[112]. Holographic instructions, equipment 
schematics, and operational procedures can be 
provided to workers individually in their field of view 
and hands free to allow them to get down to work. 
This strategy accelerates the process of learning, 
decreases the use of physical training resources, and 
improves the effectiveness of knowledge retention 
due to interactive and practical experiences[113], 
[114]. 
 
4.6. Discussion 
Table 3 summarizes smart manufacturing 
technologies and their roles in Industry 5.0 
implementations. The main conclusions include: 
 
 

# 
Technology 

Function Market Size/Growth Key Advantages Integration 

1 IIoT Real-time data collection 27% CAGR to 2026 5G connectivity 
2 OPC UA Semantic industrial 

communication 
Industry standard Machine-to-machine 

3 MQTT Cloud connectivity Lightweight protocol Edge to cloud 
4 Cyber-physical 

systems 
Integrated computing and 
control 

$118.2B in 2024 Multi-layer 
architecture 

5 Digital twins Virtual representation 13.7% CAGR to 2030 Simulation and 
prediction 

6 VR training Risk-free skill development 40% faster task completion Immersive learning 
7 AR guidance Real-time on-site assistance 52% cost reduction vs. 

traditional 
Point-of-need 
information 
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8 Augmented 
analytics 

Data-driven insights Increasing adoption AI-powered analysis 

Key conclusions include: 
 
⒈ IIoT is the basic layer of connectivity that 
allows real-time data retrieval of the manufacturing 
equipment and 5G networks can offer bandwidth 
and latency properties that ensure responsive control 
systems[115], [116]. This infrastructural support is 
what allows the high volumes of sensors needed to 
monitor the entire production process in a complex 
structure[117], [118]. 

⒉ OPC UA and MQTT are two 
complementary communication protocols, as OPC 
UA offers semantic richness and security to intra-
factory communications, whereas MQTT allows 
developing an efficient cloud connection. Based on a 
combination of both protocols, hybrid architectures 
are able to maximise the capabilities of Industry 5.0 
systems, whilst ensuring the security and scalability of 
the network[92], [119], [120]. 
⒊ Cyber-physical systems combine the process 
of computational intelligence with physical 
manufacturing by using embedded computing, 
which produces a closed-loop system, continually 
tracking and optimising processes. The projected 
growth of CPS market at 13.7 percent indicates 
growing usage in manufacturing industries[94], [97]. 
⒋ Digital twins allow virtualizing and 
simulating real-world assets, assisting predictive 
maintenance, process optimization, and the what-if 
analysis, without interfering with production. 
Organizations that use digital twins realize significant 
gains in equipment maintenance (20-50 percent 
downtime savings), productivity (10-30 percent 
productivity gains) and maintenance efficiencies (5-
15 percent savings)[102], [121]. 

⒌ Extended reality technologies (VR and AR) 
transform the training and on-site work processes as 
they allow to create an immersive learning setting 
and provide real-time instructions, respectively. The 
proven advantages are 40 percent faster task 
completion using VR training and 52-percent lower 
cost of training than traditional training 
methods[122], [123]. 
 
 

 
 
5. Artificial Intelligence and Machine Learning in 
Smart Manufacturing 
The implementation of AI and ML technologies is 
transforming the manufacturing process through the 
ability to predict analytics and optimize processes 
and make decisions in real time[124], [125]. These 
technologies enable manufacturers to predict the 
availability of equipment to failure, plan production 
time, minimal amounts of waste, and operational 
efficiency. 
 
5.1. Predictive Maintenance and Process 
Optimization 
Predictive maintenance systems IoT-based predictive 
maintenance systems introduce sensors that can 
continuously detect the equipment parameters, like 
vibration, temperature, pressure, and energy 
consumptions[77]. This sensor data is processed 
using advanced analytics and machine learning 
algorithms to detect subtle changes and trends that 
indicate some problematic occurrences and therefore 
perform proactive maintenance before any 
breakdowns[79], [126]. This maintenance based on 
data is a great advancement over the conventional 
preventive maintenance schemes. Whereas 
preventive maintenance is operated according to a 
fixed timetable irrespective of the actual equipment 
state, predictive maintenance is operated according 
to a timetable and undertakes repairs accordingly 
depending on the real time equipment health data. 
It has been shown that predictive maintenance with 
the use of IoT can help save unplanned downtime by 
huge percentages and maximize Overall Equipment 
Effectiveness (OEE[127], [128]). During production 
optimization, AI analyses large volumes of 
manufacturing data to determine bottlenecks, 
optimise the distribution of resources, and enhance 
production planning. Data analytics will help 
manufacturers to enhance productivity by an average 
of 25 percent with improved workflows and 
efficiency. Modern AI systems predict demand and 
maintain inventory, optimizing inventory and 
reacting to market trends in a better way than 
conventional methods[73], [129], [130]. Figure 8 
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shows the AI/ML predictive maintenance workflow from data collection through to decision-making. 

5.2. Quality Control and Defect Detection 
Deep learning has transformed the field of quality 
control in production because of the previously 
uninterested accuracy, speed and flexibility in 
inspecting defects. The old-fashioned methods of 
quality control based on the hand-written algorithm 
is effective but limited in the sense of acquiring 
knowledge and adjusting to new product defects and 
variations. The Deep learning does not have these 
limitations because it uses large volumes of data to 
train the neural networks that can detect and 
categorize defects with great accuracy[131], [132]. 
Research shows that the use of AI has resulted in 
impressive progress in quality control effectiveness. 
According to the research findings, deep learning 
algorithms used in quality control may raise the 
accuracy of defect detection to 90 percent. According 
to the reports provided by leading tech firms, 
manufacturers of deep learning algorithms are able 
to save up to 80 percent of time spent in quality 
control, which reflects in the economy of 
considerable costs[133], [134]. Moreover, AI-based 
quality control systems allow detecting and fixing 
defects during the production process but not at the 
end of the production lines which eliminates the 
further development of defective products and 
minimizes waste[135], [136]. 
 

 
Deep learning computer vision systems examine the 
output of industrial cameras, scanning electron 
microscopes (SEM), X-ray equipment, and others in 
order to identify flaws in the surface, dimensional 
errors, and structural anomalies. These systems are 
on-duty and ensure consistent accuracy, which 
manual inspection [137], [138]. 
 
5.3. Data-Driven Production Systems 
Data-driven manufacturing relies on the use of 
operational and events data of the shop floor 
equipment, operators and supply chains to make 
decisions and optimise operations[139]. This will 
allow manufacturers to have in-depth understanding 
of production KPIs like cycle times, downtime, and 
equipment performance, and realize the 
opportunities of improvement such as the 
optimization of machine settings and the efficiency 
of workflows[100], [140]. 
The manufacturing analytics systems are 
manufactured with data incoming across various 
sources such as databases (SQL, NoSQL), individual 
file formats, and industrial IoT communication 
devices (OPC) with manufacturing equipment. 
Scalability is achieved in data storage and processing 
through cloud interfaces to Amazon S3, Azure Data 
Lake, and Google Cloud Storage[141], [142]. 
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Sophisticated analytical methods such as machine 
learning, multiobjective modeling, and statistical 
modeling are used on multiple-variate data to apply 
advanced process control, process monitoring, drift 
and defect prediction, root cause identification, and 
manufacturing recipes optimization[143], [144]. 
Automated Classification and Regression Learner 
apps based on AutoML technology are interactive 
applications that can be used to generate optimized 
machine learning models by automatically selecting, 
selecting and tuning hyperparameters[145], [146]. 
Companies that use data-driven manufacturing 
strategies indicate high levels of improvement in 

their operations. Studies show that the majority of 
manufacturers who implemented data-driven 
strategies (78%), said that operational efficiency had 
improved, and the average productivity had 
improved by 25%. The manufacturing industry 
statistics indicate that manufacturing companies that 
succeed in exploiting data analytics in their 
manufacturing processes would be in a position to 
increase production capacity by up to 20 
percent[147], [148]. 
 

 
5.4. Discussion 
Table 4 summarizes AI/ML applications in manufacturing and their business impacts. The key contributions 
are as follows: 
# AI/ML 
Application 

Technology Performance 
Improvement 

Key Metrics Industry Adoption 

1 Predictive 
maintenance 

Early failure detection Downtime reduction 65% of large 
manufacturers 

2 Demand 
forecasting 

Inventory optimization 25% average productivity 
increase 

Growing adoption 

3 Defect detection Deep learning vision 90% accuracy 72% of quality teams 
4 Quality inspection CNN-based analysis 80% time reduction Widespread 
5 Process 

optimization 
Multiobjective 
optimization 

20% capacity increase Increasing 

6 Root cause analysis ML pattern recognition Faster problem resolution Emerging 
7 Anomaly detection Statistical methods Early issue identification Growing 
8 Production 

scheduling 
AI optimization Reduced cycle times Advanced facilities 

Key conclusions include: 
 
⒈ With the help of IoT sensors and machine 
learning, predictive maintenance can be 
implemented, which allows taking some actions in 
advance before the equipment malfunctions, 
minimizing any unwanted downtimes and 
optimizing the usefulness of machines. This is a 
radical change in terms of reactive to proactive 
maintenance procedures[128], [149]. 
⒉ The quality control systems built with deep 
learning can identify defects with an accuracy of 90% 
with the inspection time reduced by 80 percent 
relative to the manual system. In-line inspection 
during the manufacturing process avoids 
advancement of faulty products in the  

 
manufacturing stages, and minimizes the expense of 
rework and scrap at the manufacturing phase[150], 
[151]. 
⒊ Data-driven manufacturing makes use of 
integrated analytics platforms based on the 
combination of shop-floor data, enterprise systems 
and cloud computing to detect optimization 
opportunities. The observed 25 percent mean 
productivity boost justifies the usefulness of data-
driven decision making in manufacturing 
processes[139], [152]. 
⒋ The most recent machine learning methods 
such as multiobjective optimization and AutoML 
allow continuously improving by developing models 
and tuning hyperparameters automatically. These 
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capabilities make development effort less and 
prediction accuracy and system adaptation a lot 
better[153], [154]. 
⒌ Manufacturers that have effectively adopted 
data-driven strategies also demonstrate and record 
improvements in several performance dimensions 
such as productivity (25% average), capacity growth 
(20% potential), and an operational efficiency 
growth (78% of adopters)[139]. 
⒍  
6. Programming Tools and Technical 
Implementation 
The effective adoption of Industry 5.0 systems will 
demand an understanding of various programming 
languages and development platforms depending on 
various features of smart manufacturing[4], [30]. This 
chapter discusses Python, R, MATLAB, Node-RED 
and sensor integration methods towards Industry 
5.0. 
 
6.1. Python for Data Science and AI 
Python is used very widely in machine learning, 
artificial intelligence, and data engineering because 
of its efficiency and a large number of libraries. The 
language is superb when dealing with large volumes 
of data and offers extensive structures of deep 
learning, neural networks, and sophisticated 
analytics[155], [156], [157]. The ability of Python to 
integrate with industrial systems with libraries that 
facilitate connection to OPC UA, MQTT among 
other industrial protocols makes it useful in IIoT 
applications[158], [159]. 
The key benefits of Python in manufacturing include 
wide machine learning packages (scikit-learn, 
TensorFlow, PyTorch), good data manipulation 
(Pandas, NumPy), issues with plenty of visualization 
(Matplotlib, Plotly) and a large community with 
widespread industrial automation examples[160], 
[161], [162]. 
 
6.2. R for Statistical Analysis 
R is still a better fit to statistical analysis and 
visualization, with its better abilities to process 
tabular data and statistical modelling[163], [164]. 
The storage capacity of R has been found to be better 
than that of Python Pandas at very specific data 
scales due to the effective storage of data by R as 
compared to Python, especially when complex 

statistical calculations are required without involving 
large exchanges in databases[165], [166], [167]. 
R has strong qualities of quality control analysis, 
process capability studies, and statistical process 
control (SPC) implementations in manufacturing 
situations. The language offers sensitive visualization 
tools to analyze the exploratory data and the full test 
of statistics to validate the hypothesis[168]. 
 
6.3. MATLAB for Manufacturing Analytics 
MATLAB is an integrated environment that is 
especially useful in manufacturing analytics, as it 
offers data analysis, machine learning, and system 
modeling with it[169], [170]. The platform allows 
engineers to get access to operation and test data 
through databases, dedicated file formats, or 
industrial IoT communication systems and offers 
predictive analytics, process optimization, and digital 
twin development tools[171], [172]. 
The two-way synchronization of MATLAB and 
Python enables the teams to utilize the benefits of 
both languages, and there are functionalities to 
invoke Python libraries in MATLAB or package 
MATLAB programs to run in Python programs. This 
interoperability allows organizations to use the 
powerful signal processing and control system 
features of MATLAB with machine learning libraries 
of Python[170], [173]. 
 
6.4. Node-RED for Industrial Automation 
Following the release of the Node-RED graphical 
programming platform, which is now a formidable 
tool in the design of Industrial IoT applications, the 
software has become useful in extending platforms 
pertaining to PLC hardware, networks, and analytics 
within the same development environment[174], 
[175], [176]. This is a browser-based platform that 
operates with functions (also known as nodes) that 
are linked in flow diagram layouts, and there are also 
thousands of existing, off-the-shelf nodes that can be 
used in different industrial applications[177]. 
The low-code model of Node-RED saves a lot of time 
spent on the development of the tool because instead 
of manually writing communication protocols and 
data processing logic, pre-built functionality is 
available[178], [179]. The platform is compatible 
with a large quantity of industrial communication 
protocols such as MQTT, HTTP, TCP, Modbus, 
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OPC-UA, and UDP, which allows simplifying 
communication over the PLC level to cloud 
applications[180], [181]. 
According to survey data, Node-RED is finding more 
significant applications in industrial automation 
applications such as hosted dashboards, building 
control, data processing, integration with PLC 
devices and edge devices logic[175], [182]. This 
feature of the platform to gather information using 
the local devices such as PLCs, manipulate it in 
useful forms, and transmit them to the cloud 
providers makes it even more valuable in bridging 
the operational technology and information 
technology systems. 
 
6.5. Sensor Integration and Data Acquisition 
The basis of smart manufacturing today is the use of 
modern data acquisition systems that transform 
physical parameters into a series of digital data to be 
processed and analyzed. Such systems combine 
different types of sensors such as temperature sensors 
(thermocouples, thermistors), pressure sensors, 
accelerator and vibration sensors, flow sensors, 
displacement sensor and photoelectric sensors[183], 
[184]. 

The sensor signals are sampled using data acquisition 
cards, which facilitate the digitalization of sensor  
signals and the analysis of the digitalized data using 
industrial control systems or through cloud 
platforms. The IoT based data acquisition systems 
involve sensor networks in remote data collection 
and wireless transmission that allows real time 
monitoring and management of equipment, 
production processes and environmental 
conditions[185], [186]. 
With proper sensor integration, it is possible to 
achieve such critical manufacturing functions as real-
time monitoring and quality control, predictive 
maintenance due to continuous monitoring of the 
equipment health condition, production 
optimization due to workflow and layout analysis, 
and energy management due to consumption 
monitoring[73], [187]. The combination of AI and 
machine learning with sensor data will allow more 
and more accurate prediction and automatic control, 
where AI will study large volumes of historical data 
and indicate equipment failures, quality problems, 
and the most efficient production levels[188], [189]. 
 

 
6.6. Discussion 
Table 5 summarizes programming tools and their applications in Industry 5.0 implementations. Key 
contributions include: 
# 
Tool/Language 

Primary 
Function 

Key Strength Integration Use Case 

1 Python Machine learning and AI Extensive ML libraries IIoT data analysis 
2 R Statistical analysis Advanced statistics Quality control 

analysis 
3 MATLAB System modeling and 

control 
Signal processing Digital twins 

4 Node-RED Low-code automation Pre-built industrial 
nodes 

Real-time control 

5 OPC UA Industrial communication Semantic data models Machine integration 
6 MQTT Lightweight communication Minimal overhead Cloud connectivity 
7 Sensors Physical data collection Real-time monitoring Equipment health 
8 Edge computing Local processing Low-latency response Predictive control 
Key conclusions include: 
⒈ Python also has extensive machine learning 
and AI, and features a high level of integration of 
industrial protocols, which makes it a great choice 
when creating IIoT applications and has to perform  

 
advanced data analysis. The large Industry 5.0 
ecosystem of libraries and community support helps 
develop Industry 5.0 systems quickly[115], [116]. 
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⒉ R is also used in statistical analysis, quality 
control applications, which provide process 
capability studies and statistical process control tools, 
as needed by manufacturing organizations. The 
effective data management in R renders it useful in 
organizations with big historical data to be 
analyzed[190], [191]. 
⒊ MATLAB integrates signal processing, 
control systems, and machine learning into a single 
environment and is strong in areas of developing 
digital twins and optimization on the system level. 
Hybrid Python integration has been made possible 
via two-way integration to allow hybrid applications 
that can exploit the control features of MATLAB 
with machine learning libraries in Python[192], 
[193]. 
⒋ The low-code graphical interface of Node-
RED can cut industrial automation development 
time dramatically with factory-supported industrial 
communication protocols and data processing 
capabilities. The platform helps in rapid prototyping 

and deployment of IIoT solutions with little 
knowledge of programming knowledge[177], [178]. 
⒌ Integration approaches that involve wide 
varieties of sensors along with cloud-based data 
acquisition platforms allow accessibility to real-time, 
increased maintenance-related predictions, and 
automated optimization choices. The capabilities of 
AI analysis of sensor data are growing to offer 
predictive capabilities that ensure prevention of 
failures and proactive optimization of operations[34], 
[194]. 
 
7. Extended Reality for Workforce Development 
The technologies of the extended reality are 
revolutionizing the training of the workforce in the 
manufacturing sector which has a severe lack of the 
skills and allows transferring knowledge safely and 
efficiently[106], [195]. This section discusses VR 
training, AR-assisted operations, and hybrid methods 
of developing the Industry 5.0 workforce. Figure 9 
shows the Extended Reality (XR) technologies for 
workforce development in Industry 5.0. 

 

7.1. Virtual Reality Training 
VR allows employees to train based on how to use 
the machinery, do maintenance, or react to 
emergencies in fully simulated, risk-free virtual space 
before interacting with the real equipment. This  

 
ability eliminates a very difficult issue of 
manufacturing training, the cost and the difficulty of 
giving practice using costly production 
equipment[196]. 

Mixed Reality 

(MR) 
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Research shows that VR-trained workers can 
accomplish their tasks up to 40 times faster than in 
more conventional methods and that VR-based mass 
training is sometimes up to 52 times less expensive 
than more traditional classroom training[107]. These 
enhancements are due to a number of factors such as 
the provision of immersive learning experiences that 
involve the utilization of multiple senses, the 
capability of practicing endlessly without the risk of 
damaging equipment and also the ability to learn at a 
pace of your own that suits various levels of 
skills[197], [198]. 
The VR training applications in manufacturing 
involve: 
⒈ Training of equipment operation CNC 
machines, injection molding equipment, and 
assembly equipment[199], [200]. 
⒉ Preventive maintenance such as equipment 
diagnosis, replacement, and troubleshooting[201], 
[202]. 
⒊ Hazardous situation and emergency response 
safety training[203]. 
⒋ Inspection methods of quality control and 
identification of defects[204]. 
⒌ Production changes to new product 
assembly processes[205]. 
 
7.2. Augmented Reality Guidance 
The AR applications also superimpose digital 
information to the physical world that can be used as 
a guide to assemble, maintain, and perform quality 
inspections in real-time[206], [207]. The workers are 
also able to see step-by-step holographic instructions, 
equipment schematics, and operational procedures 
that are in their field of view and they are free to 
carry out their tasks. 
This type of information at the point-of-need 
improves the learning processes and minimizes the 
dependency on physical training resources and 
increases the retention of the knowledge through the  

interactive and hands-on learning[208], [209]. The 
best manufacturers and leaders have shown 
impressive improvements in the application of AR. 
Volvo Group found AR as the best option to be 
paper based quality assurance that developed digital 
threads between engineering systems and assembly 
technicians that allow AR experiences to be created 
and updated within minutes instead of hours or 
weeks[206], [210]. Digital twin technology is one of 
the applications that Siemens deployed at their 
Amberg electronics factory through AR visualization 
to streamline the production and maintenance 
processes, allowing employees to detect possible 
problems at an early stage and conduct a more 
efficient predictive maintenance[210], [211]. 
 
7.3. Mixed Reality Integration 
Mixed reality (MR) is a set of VR and AR features 
that allow to provide advanced training and 
operations support. MR can enable trainees to 
engage with virtual equipment but they can see their 
physical surroundings and this results in building 
hybrid training environments which become much 
more easily transferred to real-world operations[212], 
[213]. 
More sophisticated applications of MR devices 
encompass collaborative training in which numerous 
workers perceive common virtual objects located in 
their physical areas, which make it possible to learn 
together and coordinate team learning. Also, MR can 
be used in hybrid maintenance in which the 
technician is physically working on the actual 
equipment and a virtual overlay is used as a guide, 
performance history data and predictive 
maintenance suggestions[214], [215]. 
 
7.4. Discussion 
Table 6 summarizes extended reality technologies for 
workforce development. Key findings include: 
 
 

# XR 
Technology 

Application Performance 
Improvement 

Cost Benefit Industry Use 

1 VR equipment 
operation 

40% faster task completion Training cost 
reduction 

Assembly, machining 

2 VR maintenance 
training 

Skill acquisition 
improvement 

52% vs. traditional Troubleshooting, 
diagnostics 

3 VR safety training Knowledge retention Risk-free practice Emergency response 
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4 AR assembly guidance Real-time instruction Error reduction Complex assemblies 
5 AR maintenance 

support 
Faster troubleshooting Reduced downtime Predictive maintenance 

6 AR quality inspection Accuracy improvement Defect detection Quality assurance 
7 MR collaborative 

training 
Team coordination Knowledge sharing Multi-worker processes 

8 Digital twin 
visualization 

Comprehensive 
understanding 

System optimization Equipment monitoring 

Key conclusions include: 
 
⒈ VR training is an approach that allows 
practicing the risk-free environment, and, thus, it is 
possible to complete the tasks 40 and 52 times faster 
and save money 52 times more than traditional 
training techniques. The effects of these 
improvements are due to limitless repetition of 
specific practice and customized learning speed[200], 
[216]. 
⒉ The point of need AR guidance is visual 
support in real-time overlaying the procedures on the 
physical equipment, schematics, and data to 
minimize errors and speed up the learning process. 
Effective commercial applications indicate fast 
development and integration of AR experiences, 
which make them quickly adapt to process 
modification[210], [217]. 
⒊ The hybrid training and operational 
experience through the integration of mixed reality 
allows virtual practice with virtual equipment and 
real-world awareness of the physical environment, 
which enhances the effectiveness of the transfer to 
real-world manufacturing activities[210], [218]. 
⒋ The combination of digital twins and AR 
and VR can be used to develop multi-dimensional 
visualization systems that allow workers to perceive 
complex systems in multiple ways- virtual practice 
systems, real-time overlays, and predictive 
analytics[1], [102]. 
8. Emerging Trends, Sustainability, and Future 
Directions 
There are a number of new trends that are defining 
the future of Industry 5.0 research, implementation, 
and manufacturing practice. In this part, the author 
discussion delves into progressive human-machine 
interfaces, sustainability integration, and workforce 
development issues, as well as future research. 
 

8.1. Advanced Human-Machine Interfaces 
 
The future will focus on human-friendly AI that will 
guarantee transparency, flexibility, and confidence in 
the decision-making systems. Highly developed 
cobots that can sense and learn better will allow 
greater collaboration in common work areas. To 
address very complex problems of the industrial 
nature, hybrid decision-making will combine human 
intuition and reasoning in the conditions of 
uncertainty with the computational capabilities of AI 
and huge quantities of data to effectively resolve the 
problems[34], [219], [220]. 
ER technologies actively develop to enable human-
machine co-operation, and AR-assisted robot 
programming tries to overcome the drawbacks of 
traditional programming-by-demonstration 
technologies, by increasing the modality of the 
input[221], [222], [223]. There is a growing 
development of virtual and augmented reality 
applications of digital management of work places 
and human-robot collaboration that can aid the 
interconnected human-robot data transfer to 
optimize the task assignment, motion planning and 
manipulator coordination[222]. 
 
8.2. Sustainability and Circular Economy 
The concept of sustainability and resource efficiency 
is becoming a priority issue in Industry 5.0. The AI 
technologies are also used to enhance the energy 
efficiency, waste minimization, and use of resources 
to help the manufacturer comply with the 
environmental regulations and meet the 
sustainability targets, as well as, increase the cost-
efficiency[81], [224], [225]. 
Circular economy principles are already being 
developed in connection with Industry 5.0 
technologies, and special attention is paid to bio-
inspired technologies and smart materials that will 
enable materials with built-in sensors and other 
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functionalities and be recyclable. Simulation 
technologies and digital twins can be used to model a 
complete system to facilitate circular methods of 
manufacturing and material consumption[226]. 

Figure 10 shows the Sustainable Manufacturing and 
Circular Economy Integration in Industry 5.0. 

 

 

 
 
8.3. Workforce Development and Human-
Centricity 
Solving human-related conflicts in Industry 5.0 
implementation is an important field of research. 
The main issues are how to incorporate the current 
human factors into the cooperation with the latest 
technologies, how to keep the constant industrial 
and digital projects and introduce human aspects in 
them, and how to focus on the development of skills 
of workers and the technological growth[9], [16]. 
Resolution strategies that have been found in the 
literature are the intelligent automation of 
manufacturing processes to minimize redundant 
tasks, the use of Industry 5.0 maturity models that 
facilitates human-centricity, re-training of 
manufacturing personnel on soft skills and academic 
qualifications, and the creation of new tools to 
support workers in the virtual realm[4], [9]. Including 
performance-fatigue balance decision models and the 
creation of technologies that meet the needs of the  

 
 
workers and enhance human-focused value creation 
are also perspectives of current research 
importance[227], [228]. 
 
8.4. Research Challenges 
There are a number of long-term problems that 
should be addressed through research: 
⒈ Security of cyberspace in IIoT settings - 
Safeguarding more and more manufacturing systems 
with increasing connections to cyber attacks and 
their effect on operation efficiency[229], [230], [231]. 
⒉ Data quality and integration - Providing data 
flows between various legacy and new manufacturing 
equipment that is reliable and consistent[232], [233], 
[234]. 
⒊ AI explainability - Building clear machine 
learning models that are comprehensible and 
credible to manufacturing workers[235], [236], [237]. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://thesesjournal.com               | Memon et al., 2025 | Page 1911 

⒋ Skills development - Educating the 
workforce to handle Industry 5.0 jobs that need 
technical skills and humanistic skills[4], [69]. 
⒌ Standardization - Developing universal 
standards of industrial protocols, data formats and 
system interfaces so that they are interoperable[4], 
[30] 
 
8.5. Future Research Directions 
The research opportunities that can be advanced to 
support Industry 5.0 are: 
⒈ Federated learning - Creation of distributed 
machine learning models, which allow training AI 
models on multiple facilities and maintain the 
privacy of all the data[30], [116], [238]. 
⒉ Quantum computing applications - 
Investigating the application of quantum algorithms 
in solving complex optimization manufacturing 
problems that cannot be resolved by classical 
computational facilities[239], [240]. 
⒊ Bio-inspired manufacturing - Biological 
lessons on resilient, adaptive manufacturing 
processes[241]. 
⒋ Human-AI collaboration models - Designing 
conceptual frameworks and procedures to assign and 
interact tasks to humans and machine in the best 
way achievable[242], [243]. 
⒌ Sustainable manufacturing systems - Circular 
economy focused manufacturing with Industry 5.0s 
to create zero-waste manufacturing[24]. 
⒍ Edge AI systems - Further development of 
the capabilities of on-device machine learning to 
enable real-time decision-making without the need to 
connect to the cloud[69], [244]. 
8.6. Discussion 
This section integrates the new trends and research 
priorities in developing Industry 5.0. Key 
conclusions include: 
⒈ In the advanced human-machine interface 
development is concentrated on transparency, 
adaptability and trust as it is acknowledged that 
acceptance of technology relies on the understanding 
and the trust of the user towards AI-driven systems. 
Cobots of the future with more advanced sensing 
and learning will allow more complex scenarios of 
cooperation[245]. 

⒉ Sustainability integration is an ideal change 
to manufacturing philosophy as a continuation of 
efficiency optimisation to environmental 
responsibility and the principles of a circular 
economy. This shift will need coming up with AI 
systems that are sustainable and productive[244]. 
⒊ The development of the workforce is also 
one of the significant barriers to implementation, 
which requires the combination of technical skills 
development with the development of soft skills and 
the development of meaningful work that utilizes 
human individuality[4]. 

⒋ Cybersecurity, data integration, AI 
explainability, and standardization are urgent 
problems that need to be resolved on an industry-
wide level and allow the Industry 5.0 to be used all 
over the world[4], [246]. 
⒌ New research topics such as federated 
learning, applications of quantum computing, bio-
inspired manufacturing, and sustainable system 
design are expected to give Industry 5.0 its next leap 
forward. These guidelines imply that there will be a 
shift towards manufacturing systems that are more 
and more distributed-intelligence based, more 
environmentally responsible, and more human 
friendly[4], [246]. 
 
9. Conclusion 
Industry 5.0 is a vision statement of how the 
manufacturing industry should look like in the 
future where human workers will be at the centre of 
more and more digitalized and automated 
manufacturing settings. When humans and robots 
work together, artificial intelligence and machine 
learning, Industrial Internet of things, cyber-physical 
systems, and augmented/virtual reality are all 
integrated, complete ecosystems are formed, which 
help improve productivity and human well-being. 
This review has captured the complex aspects of 
Industry 5.0 development and implementation. The 
human-centric philosophy of Industry 5.0, 
particularly in comparison to the technology-centric 
nature of Industry 4.0, is the initial indication of the 
fact that sustainable manufacturing is successful only 
when the efficiency is combined with the human 
dignity, sustainability, and resilience. The 
collaborative technologies between humans and 
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robots show that technological development can 
make human workers better contributors, and the 
manufacturing work is safe, productive, and 
meaningful. 
The infrastructure to support operational excellence 
and human-centric manufacturing is a set of smart 
manufacturing technologies such as IIoT, cyber-
physical systems, and digital twins, which are used to 
support real-time monitoring, data-driven decision-
making, and adaptive production systems. The 
application of artificial intelligence and machine 
learning in predictive maintenance, quality control, 
and optimization of production are examples of how 
high-tech technologies can supplement the human 
decision-making process and speed up the process of 
innovative development. 
Industry 5.0 is based on a large number of 
programming tools (Python, R, MATLAB, Node-
RED), industrial communication standards (OPC 
UA, MQTT), and overall sensor integration 
strategies that allow manufacturers to create 
responsive and intelligent production systems. The 
ER technologies transform the process of workforce 
development by providing the ability to train in the 
immersive environment and guiding the operations 
on the point-of-need basis. 
The publication of research in high-impact journals 
demands the use of strategic strategies that include 
quality research, journal selection, as well as effective 
presentation, whereby researchers will be able to 
share the advances of Industry 5.0 with the global 
manufacturing and academic fraternity. 
The current developments such as high-tech human-
machine interfaces, sustainability, and the principles 
of the so-called circular economy suggest that future 
manufacturing systems will be more oriented towards 
responsible attitudes towards the environment and 
human well-being in equal ratio. Ongoing research 
issues such as cybersecurity, data integration, 
explainability of AI, or workforce development are 
issues that need to be addressed to achieve the 
transformative potential of Industry 5.0. 
The shift aimed at Industry 5.0 promises high 
opportunities to develop the manufacturing 
capacities and provide safer and more satisfying and 
sustainable working conditions. The vision will 
require more studies and development of these 
interrelated areas of technology together with 

changes within an organization in support of human-
centric values to handle the complicated issues of the 
next generation manufacturing systems. 
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